Direkt zum Inhalt
Merck
  • Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique.

Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique.

Tissue engineering. Part A (2014-11-21)
Marina Koulikovska, Mehrdad Rafat, Goran Petrovski, Zoltán Veréb, Saeed Akhtar, Per Fagerholm, Neil Lagali
ZUSAMMENFASSUNG

Severe shortage of donor corneas for transplantation, particularly in developing countries, has prompted the advancement of bioengineered tissue alternatives. Bioengineered corneas that can withstand transplantation while maintaining transparency and compatibility with host cells, and that are additionally amenable to standardized low-cost mass production are sought. In this study, a bioengineered porcine construct (BPC) was developed to function as a biodegradable scaffold to promote corneal stromal regeneration by host cells. Using high-purity medical-grade type I collagen, high 18% collagen content and optimized EDC-NHS cross-linker ratio, BPCs were fabricated into hydrogel corneal implants with over 90% transparency and four-fold increase in strength and stiffness compared with previous versions. Remarkably, optical transparency was achieved despite the absence of collagen fibril organization at the nanoscale. In vitro testing indicated that BPC supported confluent human epithelial and stromal-derived mesenchymal stem cell populations. With a novel femtosecond laser-assisted corneal surgical model in rabbits, cell-free BPCs were implanted in vivo in the corneal stroma of 10 rabbits over an 8-week period. In vivo, transparency of implanted corneas was maintained throughout the postoperative period, while healing occurred rapidly without inflammation and without the use of postoperative steroids. BPC implants had a 100% retention rate at 8 weeks, when host stromal cells began to migrate into implants. Direct histochemical evidence of stromal tissue regeneration was observed by means of migrated host cells producing new collagen from within the implants. This study indicates that a cost-effective BPC extracellular matrix equivalent can incorporate cells passively to initiate regenerative healing of the corneal stroma, and is compatible with human stem or organ-specific cells for future therapeutic applications as a stromal replacement for treating blinding disorders of the cornea.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Aceton, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Aceton, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
N-Hydroxysuccinimid, 98%
Sigma-Aldrich
L-Glutamin, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Propidiumjodid, ≥94.0% (HPLC)
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, amylene stabilized
Sigma-Aldrich
L-Glutamin, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Aceton, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Chloroform, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Chloroform, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
SAFC
L-Glutamin
Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethyl-carbodiimid, ≥97.0% (T)
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
USP
Aceton, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Aceton, histological grade, ≥99.5%
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Corning® Costar® TC-behandelte Multiwellplatten, size 24 wells, flat bottom wells, case of 100 (20 Bulk Packs of 5), sterile, lid
Sigma-Aldrich
L-Glutamin, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
Aceton, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)