Direkt zum Inhalt
Merck

901034

Sigma-Aldrich

Polyvinyl alcohol (PVA) blend printing filament

1.75 mm

Synonym(e):

AtlasSupport, PVA blend filament

Anmeldenzur Ansicht organisationsspezifischer und vertraglich vereinbarter Preise


About This Item

CAS-Nummer:
UNSPSC-Code:
12352104
NACRES:
NA.23

Qualitätsniveau

Beschreibung

Filament roundness: ≥95%
Melt flow rate: 2.3 g/10 min
Melt temperature: ±163 °C
Print temperature: ±180-205 °C
Specific gravity: 1.22 g/cc
Spool Hub Diameter: 52 mm
Spool Size (DxH): 200 mmx55 mm
Vicat softening temperature: ± 60.2 °C

Form

solid (filament)

Farbe

orange, natural

Durchmesser

1.75 mm±0.05 mm (filament diameter)

InChI

1S/C2H4O/c1-2-3/h2-3H,1H2

InChIKey

IMROMDMJAWUWLK-UHFFFAOYSA-N

Suchen Sie nach ähnlichen Produkten? Aufrufen Leitfaden zum Produktvergleich

Verwandte Kategorien

Allgemeine Beschreibung

Polyvinyl alcohol (PVA) blend printing filament is a water-soluble support material for multi-extrusion 3D printing of complex architectures. This material is a blend of different grades of PVA to improve the thermal stability and printability of polyvinyl alcohol. In addition to these improvements, this blend is also less sensitive to degradation by humidity while retaining its water solubility. This pale orange, odorless, and high-quality filament extrudes between 180 to 205 °C and is suitable with all RepRap technology-based desktop 3D printers, such as MakerBot, Ultimaker, RepRap (Mendel, Huxley, Prusa), UP, Solidoodle, Leapfrog, etc. This PVA blend filament features good adhesion to a wide variety of materials, such as PLA, ABS, PETG, ASA, HIPS, and nylon, and is biodegradable in water with no hazardous by-products. While PVA is soluble in cold water, the dissolution process can be accelerated by using a continuously heated bath of warm water. When not in use, the filament should be stored at room temperature in dry conditions, such as in a sealed plastic bag or in a closed container with desiccant. Recommended initial printer settings can be found in the ′General Print Settings′ file.

Anwendung

AtlasSupport is a trademark of Formfutura VOF
Due to its water-solubility and biocompatibility, polyvinyl alcohol (PVA) filaments are most commonly used as a sacrificial material in the formation of tissue engineering constructs with unique and complicated architectures. The use of this material allows for the printing of scaffolds with large overhangs, deep internal cavities, and/or intricate geometries. In addition to their use as sacrificial materials, PVA filaments have also been used to print novel oral drug delivery devices and tablets.

Rechtliche Hinweise

AtlasSupport is a trademark of Formfutura VOF

Lagerklassenschlüssel

11 - Combustible Solids

WGK

WGK 1

Flammpunkt (°F)

49.5 °F - closed cup

Flammpunkt (°C)

9.7 °C - closed cup


Analysenzertifikate (COA)

Suchen Sie nach Analysenzertifikate (COA), indem Sie die Lot-/Chargennummer des Produkts eingeben. Lot- und Chargennummern sind auf dem Produktetikett hinter den Wörtern ‘Lot’ oder ‘Batch’ (Lot oder Charge) zu finden.

Besitzen Sie dieses Produkt bereits?

In der Dokumentenbibliothek finden Sie die Dokumentation zu den Produkten, die Sie kürzlich erworben haben.

Die Dokumentenbibliothek aufrufen

Alice Melocchi et al.
International journal of pharmaceutics, 509(1-2), 255-263 (2016-05-25)
Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation.
Shuai Li et al.
ACS applied materials & interfaces, 8(38), 25096-25103 (2016-09-09)
Despite considerable advances in tissue engineering over the past two decades, solutions to some crucial problems remain elusive. Vascularization is one of the most important factors that greatly influence the function of scaffolds. Many research studies have focused on the
R Hernández-Córdova et al.
Journal of biomedical materials research. Part A, 104(8), 1912-1921 (2016-03-19)
Biomaterial scaffolds are a key part of cardiac tissue engineering therapies. The group has recently synthesized a novel polycaprolactone based polyurethane-urea copolymer that showed improved mechanical properties compared with its previously published counterparts. The aim of this study was to
Tatsuaki Tagami et al.
Biological & pharmaceutical bulletin, 40(3), 357-364 (2017-03-03)
Three-dimensional (3D) printers have been applied in many fields, including engineering and the medical sciences. In the pharmaceutical field, approval of the first 3D-printed tablet by the U.S. Food and Drug Administration in 2015 has attracted interest in the manufacture
Soumyaranjan Mohanty et al.
Materials science & engineering. C, Materials for biological applications, 55, 569-578 (2015-06-29)
One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl

Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..

Setzen Sie sich mit dem technischen Dienst in Verbindung.