Accéder au contenu
MilliporeSigma

Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response.

PloS one (2015-04-14)
Julie Sesen, Perrine Dahan, Sarah J Scotland, Estelle Saland, Van-Thi Dang, Anthony Lemarié, Betty M Tyler, Henry Brem, Christine Toulas, Elizabeth Cohen-Jonathan Moyal, Jean-Emmanuel Sarry, Nicolas Skuli
RÉSUMÉ

High-grade gliomas, glioblastomas (GB), are refractory to conventional treatment combining surgery, chemotherapy, mainly temozolomide, and radiotherapy. This highlights an urgent need to develop novel therapies and increase the efficacy of radio/chemotherapy for these very aggressive and malignant brain tumors. Recently, tumor metabolism became an interesting potential therapeutic target in various cancers. Accordingly, combining drugs targeting cell metabolism with appropriate chemotherapeutic agents or radiotherapy has become attractive. In light of these perspectives, we were particularly interested in the anti-cancer properties of a biguanide molecule used for type 2 diabetes treatment, metformin. In our present work, we demonstrate that metformin decreases mitochondrial-dependent ATP production and oxygen consumption and increases lactate and glycolytic ATP production. We show that metformin induces decreased proliferation, cell cycle arrest, autophagy, apoptosis and cell death in vitro with a concomitant activation of AMPK, Redd1 and inhibition of the mTOR pathway. Cell sensitivity to metformin also depends on the genetic and mutational backgrounds of the different GB cells used in this study, particularly their PTEN status. Interestingly, knockdown of AMPK and Redd1 with siRNA partially, but incompletely, abrogates the induction of apoptosis by metformin suggesting both AMPK/Redd1-dependent and -independent effects. However, the primary determinant of the effect of metformin on cell growth is the genetic and mutational backgrounds of the glioma cells. We further demonstrate that metformin treatment in combination with temozolomide and/or irradiation induces a synergistic anti-tumoral response in glioma cell lines. Xenografts performed in nude mice demonstrate in vivo that metformin delays tumor growth. As current treatments for GB commonly fail to cure, the need for more effective therapeutic options is overwhelming. Based on these results, metformin could represent a potential enhancer of the cytotoxic effects of temozolomide and/or radiotherapy.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Saccharose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Bleu de trypan solution, 0.4%, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Chlorure de magnésium solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Chlorure de magnésium, anhydrous, ≥98%
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Saccharose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Pyruvate de sodium, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Acide éthylène glycol-bis(2-aminoéthyléther)-N,N,N′,N′-tétraacétique, for molecular biology, ≥97.0%
Sigma-Aldrich
Cyanure de 4-(trifluorométhoxy)phénylhydrazone carbonyle, ≥98% (TLC), powder
USP
Saccharose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acide éthylènediaminetétraacétique solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Témozolomide, ≥98% (HPLC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Chlorure de magnésium, powder, <200 μm
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Trypan Blue, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Saccharose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Chlorure de magnésium solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Pyruvate de sodium, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium iodoacetate, ≥98%
Sigma-Aldrich
Chlorure de magnésium, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Pyruvate de sodium, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Saccharose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sodium iodoacetate, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Chlorure de magnésium solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Saccharose, meets USP testing specifications