Pular para o conteúdo
Merck

The Saccharomyces cerevisiae LEP1/SAC3 gene is associated with leucine transport.

Molecular & general genetics : MGG (1999-10-12)
C A Stella, C Korch, E H Ramos, A Bauer, R Kölling, J R Mattoon
RESUMO

Leucine uptake by Saccharomyces cerevisiae is mediated by three transport systems, the general amino acid transport system (GAP), encoded by GAP1, and two group-specific systems (S1 and S2), which also transport isoleucine and valine. A new mutant defective in both group-specific transport activities was isolated by employing a gap1 leu4 strain and selecting for trifluoroleucine-resistant mutants which also showed greatly reduced ability to utilize L-leucine as sole nitrogen source and very low levels of [14C]L-leucine uptake. A multicopy plasmid containing a DNA fragment which complemented the leucine transport defect was isolated by selecting for transformants that grew normally on minimal medium containing leucine as nitrogen source and subsequently assaying [14C]L-leucine uptake. Transformation of one such mutant, lep1, restored sensitivity to trifluoroleucine. The complementing gene, designated LEP1, was subcloned and sequenced. The LEP1 ORF encodes a large protein that lacks characteristics of a transporter or permease (i.e., lacks hydrophobic domains necessary for membrane association). Instead, Lep1p is a very basic protein (pI of 9.2) that contains a putative bipartite signal sequence for targeting to the nucleus, suggesting that it might be a DNA-binding protein. A database search revealed that LEP1 encodes a polypeptide that is identical to Sac3p except for an N-terminal truncation. The original identification of SAC3 was based on the isolation of a mutant allele, sac3-1, that suppresses the temperature-sensitive growth defect of an actin mutant containing the allele act1-1. Sac3p has been previously shown to be localized in the nucleus. When a lep1 mutant was crossed with a sac3 deletion mutant, no complementation was observed, indicating that the two mutations are functionally allelic.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
5,5,5-Trifluoro-DL-leucine, ≥98.0% (sum of isomers, HPLC)