Pular para o conteúdo
Merck

Break-induced replication promotes fragile telomere formation.

Genes & development (2020-09-05)
Zhe Yang, Kaori K Takai, Courtney A Lovejoy, Titia de Lange
RESUMO

TRF1 facilitates the replication of telomeric DNA in part by recruiting the BLM helicase, which can resolve G-quadruplexes on the lagging-strand template. Lagging-strand telomeres lacking TRF1 or BLM form fragile telomeres-structures that resemble common fragile sites (CFSs)-but how they are formed is not known. We report that analogous to CFSs, fragile telomeres in BLM-deficient cells involved double-strand break (DSB) formation, in this case by the SLX4/SLX1 nuclease. The DSBs were repaired by POLD3/POLD4-dependent break-induced replication (BIR), resulting in fragile telomeres containing conservatively replicated DNA. BIR also promoted fragile telomere formation in cells with FokI-induced telomeric DSBs and in alternative lengthening of telomeres (ALT) cells, which have spontaneous telomeric damage. BIR of telomeric DSBs competed with PARP1-, LIG3-, and XPF-dependent alternative nonhomologous end joining (alt-NHEJ), which did not generate fragile telomeres. Collectively, these findings indicate that fragile telomeres can arise from BIR-mediated repair of telomeric DSBs.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Anticorpo anti-fosfohistona H2A.X (Ser139), clone JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
Anti-SMARCAL1 Antibody, serum, from rabbit