Accéder au contenu
Merck

Exo-(1----3)-beta-glucanase, autolysin and trehalase activities during yeast growth and germ-tube formation in Candida albicans.

Journal of general microbiology (1984-05-01)
S P Ram, L K Romana, M G Shepherd, P A Sullivan
RÉSUMÉ

Exo-(1----3)-beta-glucanase, beta-glucosidase, autolysin and trehalase were assayed in situ in Candida albicans during yeast growth, starvation and germ-tube formation. Cell viability, germ-tube formation, intracellular glucose-6-phosphate dehydrogenase and beta-glucosidase were unaffected in cells incubated in 0.1 M-HC1 for 15 min at 4 degrees C. However, in situ trehalase, (1----3)-beta-glucanase and autolysin activities in acid-treated cells decreased by 95, 50 and 35% respectively, indicating that these enzymes are, in part, associated with the cell envelope. Trehalase activity increased throughout yeast growth and remained elevated during the first hour of incubation for germ-tube formation. All of the in situ trehalase activity in starved yeast cells could be measured without the permeabilizing treatment. beta-Glucosidase activity declined throughout yeast growth and did not alter during germ-tube formation. Both the (1----3)-beta-glucanase and autolysin activities were optimal at pH 5 X 6, inhibited by gluconolactone and HgCl2, and maximal at 15-16 h during yeast growth. Although autolysin activity increased by 50-100% when starved yeast cells were incubated for germ-tube formation, the in situ (1----3)-beta-glucanase remained constant. When acid-treated starved yeast cells were similarly induced, in situ (1----3)-beta-glucanase increased 100% over 3 h of germ-tube formation. Yeast cells secreted (1----3)-beta-glucanase into the growth medium. This was highest in early exponential phase cultures (34% of the maximum in situ activity) and declined throughout growth. (1----3)-beta-Glucanase was also secreted into the medium during germ-tube formation and this represented 80-100% of the in situ activity in germ-tube forming cells. Both secretion of (1----3)-beta-glucanase and germ-tube formation were inhibited by 2-deoxyglucose, ethidium bromide, trichodermin and azaserine.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Azaserine, ≥98% (TLC)
Référence
Conditionnement
Disponibilité
Prix
Quantité