Accéder au contenu
Merck
  • Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells.

Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells.

British journal of pharmacology (2014-03-19)
Seung Pil Yun, Sei-Jung Lee, Sang Yub Oh, Young Hyun Jung, Jung Min Ryu, Han Na Suh, Mi Ok Kim, Keon Bong Oh, Ho Jae Han
RÉSUMÉ

Reactive oxygen species (ROS) are potent regulators of stem cell behaviour; however, their physiological significance as regards MMP-mediated regulation of the motility of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) has not been characterized. In the present study, we investigated the role of hydrogen peroxide (H2O2 ) and associated signalling pathways in promoting UCB-MSCs motility. The regulatory effects of H2O2 on the activation of PKC, MAPKs, NF-κB and β-catenin were determined. The expressions of MMP and extracellular matrix proteins were examined. Pharmacological inhibitors and gene-specific siRNA were used to identify the signalling pathways of H2O2 that affect UCB-MSCs motility. An experimental skin wound-healing model was used to confirm the functional role of UCB-MSCs treated with H2O2 in ICR mice. H2O2 increased the motility of UCB-MSCs by activating PKCα via a calcium influx mechanism. H2O2 activated ERK and p38 MAPK, which are responsible for the distinct activation of transcription factors NF-κB and β-catenin. UCB-MSCs expressed eight MMP genes, but only MMP12 expression was uniquely regulated by NF-κB and β-catenin activation. H2O2 increased the MMP12-dependent degradation of collagen 5 (COL-5) and fibronectin (FN) associated with UCB-MSCs motility. Finally, topical transplantation of UCB-MSCs treated with H2O2 enhanced skin wound healing in mice. H2O2 stimulated UCB-MSCs motility by increasing MMP12-dependent degradation of COL-5 and FN through the activation of NF-κB and glycogen synthase kinase-3β/β-catenin, which is critical for providing a suitable microenvironment for MSCs transplantation and re-epithelialization of skin wounds in mice.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Peroxyde d'hydrogène solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Peroxyde d'hydrogène solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Lithium chloride, ACS reagent, ≥99%
Sigma-Aldrich
Peroxyde d'hydrogène solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
L-acide ascorbique, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-acide ascorbique, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-acide ascorbique, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Lithium chloride, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, 99%
Sigma-Aldrich
Mitomycine C from Streptomyces caespitosus, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Lithium chloride, for molecular biology, ≥99%
Supelco
L-acide ascorbique, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Lithium chloride, ReagentPlus®, 99%
Sigma-Aldrich
Lithium chloride solution, 8 M, for molecular biology, ≥99%
Sigma-Aldrich
Lithium chloride, powder, ≥99.98% trace metals basis
Millipore
Peroxyde d'hydrogène solution, 3%, suitable for microbiology
Sigma-Aldrich
L-acide ascorbique, reagent grade, crystalline
Sigma-Aldrich
Lithium chloride, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
USP
Acide ascorbique, United States Pharmacopeia (USP) Reference Standard