Accéder au contenu
Merck

Deubiquitinase OTUD5 mediates the sequential activation of PDCD5 and p53 in response to genotoxic stress.

Cancer letters (2014-12-17)
Soo-Yeon Park, Hyo-Kyoung Choi, Youngsok Choi, Sungmin Kwak, Kyung-Chul Choi, Ho-Geun Yoon
RÉSUMÉ

Programmed cell death 5 (PDCD5) positively regulates p53-mediated apoptosis and rapidly accumulates upon DNA damage. However, the underlying mechanism of PDCD5 upregulation during the DNA damage response remains unknown. Here, we found that OTU deubiquitinase 5 (OTUD5) was bound to PDCD5 in response to etoposide treatment and increased the stability of PDCD5 by mediating deubiquitination of PDCD5 at Lys-97/98. Overexpression of OTUD5 efficiently enhanced the activation of both PDCD5 and p53. Conversely, PDCD5 knockdown greatly attenuated the effect of OTUD5 on p53 activation. In addition, when OTUD5 was depleted, PDCD5 failed to facilitate p53 activation, demonstrating an essential role for the PDCD5-OTUD5 network in p53 activation. Importantly, we found that OTUD5-dependent PDCD5 stabilization was required for sequential activation of p53 in response to genotoxic stress. The sequential activation of PDCD5 and p53 was abrogated by knockdown of OTUD5. Finally, impairment of the genotoxic stress response upon PDCD5 ablation was substantially rescued by reintroducing PDCD5(WT) but not PDCD5(E94D) (defective for OTUD5 interaction) or PDCD5(E16D) (defective for p53 interaction). Together, our findings have uncovered an apoptotic signaling cascade linking PDCD5, OTUD5, and p53 during genotoxic stress responses.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Diméthylsulfoxyde, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, ACS reagent, ≥99.9%
Sigma-Aldrich
Diméthylsulfoxyde, for molecular biology
Sigma-Aldrich
Diméthylsulfoxyde, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Diméthylsulfoxyde, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Diméthylsulfoxyde, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Cycloheximide, from microbial, ≥94% (TLC)
Sigma-Aldrich
Cycloheximide solution, Ready-Made Solution, microbial, 100 mg/mL in DMSO, Suitable for cell culture
Sigma-Aldrich
Diméthylsulfoxyde, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Cycloheximide, ≥90% (HPLC)
Sigma-Aldrich
Etoposide, synthetic, 95.0-105.0%, powder
Sigma-Aldrich
Diméthylsulfoxyde, PCR Reagent
Sigma-Aldrich
Cycloheximide, Biotechnology Performance Certified
Sigma-Aldrich
Glutaraldéhyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldéhyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaraldéhyde solution, Grade II, 25% in H2O
USP
Diméthylsulfoxyde, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Glutaraldéhyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Glutaraldéhyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldéhyde solution, technical, ~50% in H2O (5.6 M)
Sigma-Aldrich
Glutaraldéhyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldéhyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Diméthylsulfoxyde, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Glutaraldéhyde solution, 50% in H2O, suitable for photographic applications
Millipore
Cycloheximide solution, 0.1%, suitable for microbiology
Supelco
Diméthylsulfoxyde, analytical standard
Supelco
Diméthylsulfoxyde, for inorganic trace analysis, ≥99.99995% (metals basis)
Diméthylsulfoxyde, European Pharmacopoeia (EP) Reference Standard