Accéder au contenu
Merck

Fructose 1,6-Bisphosphatase 2 Plays a Crucial Role in the Induction and Maintenance of Long-Term Potentiation.

Cells (2020-06-05)
Przemysław Duda, Tomasz Wójtowicz, Jakub Janczara, Daniel Krowarsch, Aleksandra Czyrek, Agnieszka Gizak, Dariusz Rakus
RÉSUMÉ

Long-term potentiation (LTP) is a molecular basis of memory formation. Here, we demonstrate that LTP critically depends on fructose 1,6-bisphosphatase 2 (Fbp2)-a glyconeogenic enzyme and moonlighting protein protecting mitochondria against stress. We show that LTP induction regulates Fbp2 association with neuronal mitochondria and Camk2 and that the Fbp2-Camk2 interaction correlates with Camk2 autophosphorylation. Silencing of Fbp2 expression or simultaneous inhibition and tetramerization of the enzyme with a synthetic effector mimicking the action of physiological inhibitors (NAD+ and AMP) abolishes Camk2 autoactivation and blocks formation of the early phase of LTP and expression of the late phase LTP markers. Astrocyte-derived lactate reduces NAD+/NADH ratio in neurons and thus diminishes the pool of tetrameric and increases the fraction of dimeric Fbp2. We therefore hypothesize that this NAD+-level-dependent increase of the Fbp2 dimer/tetramer ratio might be a crucial mechanism in which astrocyte-neuron lactate shuttle stimulates LTP formation.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Thapsigargine, ≥98% (HPLC), solid film
Sigma-Aldrich
Benzoxazole, 98%