Skip to Content
Merck
All Photos(1)

Key Documents

651745

Sigma-Aldrich

Copper(I) chloride

AnhydroBeads, ≥99.99% trace metals basis

Synonym(s):

Copper monochloride, Cuprous chloride

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CuCl
CAS Number:
Molecular Weight:
99.00
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

1.3 mmHg ( 546 °C)

Quality Level

product line

AnhydroBeads

Assay

≥99.99% trace metals basis

reaction suitability

reagent type: catalyst
core: copper

impurities

≤100.0 ppm Trace Metal Analysis

bp

1490 °C (lit.)

mp

430 °C (lit.)

solubility

slightly soluble 0.47 g/L at 20 °C

application(s)

battery manufacturing

SMILES string

Cl[Cu]

InChI

1S/ClH.Cu/h1H;/q;+1/p-1

InChI key

OXBLHERUFWYNTN-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

General description

The structure of copper(I) chloride is similar to zinc-blende crystal at room temperature, at 407 °C the structure is wurtzite and at still higher temperature it forms copper(I) chloride vapor as determined by mass spectroscopy.

Application

CuCl may be used as an initiator for hydrostannation of α,β-unsaturated ketones and other similar radical reactions.
Shows unique character as an initiator of radical reactions such as the hydrostannation of α,β-unsaturated ketones.

Legal Information

AnhydroBeads is a trademark of Sigma-Aldrich Co. LLC

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Dermal - Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1 - Skin Irrit. 2

Storage Class Code

8A - Combustible corrosive hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Madelung O
Semiconductors: Data Handbook null
Frederik Lermyte et al.
Cells, 8(10) (2019-10-30)
Transition metals have essential roles in brain structure and function, and are associated with pathological processes in neurodegenerative disorders classed as proteinopathies. Synchrotron X-ray techniques, coupled with ultrahigh-resolution mass spectrometry, have been applied to study iron and copper interactions with
Yi-Fan Zhao et al.
Journal of colloid and interface science, 448, 380-388 (2015-03-11)
Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES
Chethana Gadiyar et al.
Chemical science, 9(25), 5658-5665 (2018-08-01)
Nanocrystal-seeded synthesis relies on the reaction of nanocrystal seeds with a molecular precursor and it can be regarded as the link between sol-gel and solid-state chemistries. This synthesis approach aims at accessing compositionally complex materials, yet to date its full
J Hedlund et al.
Biomacromolecules, 10(4), 845-849 (2009-02-13)
Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the viscoelastic properties of the blue mussel, Mytilus edulis, foot protein 1 (Mefp-1) adsorbed on modified hydrophobic gold surfaces. The change in viscoelasticity was studied after addition of Cu2+

Articles

Nanostructured Materials Through Ultrasonic Spray Pyrolysis

Thermoelectric Performance of Perovskite-type Oxide Materials

Spectral conversion for solar cells is an emerging concept in the field of photovoltaics, and it has the potential to increase significantly the efficiency of solar cells. Lanthanide ions are ideal candidates for spectral conversion, due to their high luminescence efficiencies and rich energy level structure that allows for great flexibility in the upconversion and downconversion of photons in a wide spectral region (NIR-VIS-UV).

Nanostructured Materials Through Ultrasonic Spray Pyrolysis

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service