Skip to Content
Merck
All Photos(3)

Key Documents

203343

Sigma-Aldrich

Germanium

chips, 99.999% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Ge
CAS Number:
Molecular Weight:
72.64
EC Number:
MDL number:
UNSPSC Code:
12141716
PubChem Substance ID:
NACRES:
NA.23

Assay

99.999% trace metals basis

form

chips

resistivity

53 Ω-cm, 20°C

particle size

≥3 mm

bp

2830 °C (lit.)

mp

937 °C (lit.)

density

5.35 g/mL at 25 °C (lit.)

SMILES string

[Ge]

InChI

1S/Ge

InChI key

GNPVGFCGXDBREM-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Lu Dai et al.
Nanoscale, 5(3), 971-976 (2012-12-15)
The controllable fabrication of self-scrolling SiGe/Si/Cr helical nanoribbons on Si(111) substrates is investigated. The initial lateral etching profile of the Si(111) substrates shows a 2-fold rotational symmetry using 4% ammonia solution, which provides guidance for initial scrolling of one-end-fixed nanoribbons
W Streyer et al.
Optics express, 21(7), 9113-9122 (2013-04-11)
We demonstrate strong-to-perfect absorption across a wide range of mid-infrared wavelengths (5-12µm) using a two-layer system consisting of heavily-doped silicon and a thin high-index germanium dielectric layer. We demonstrate spectral control of the absorption resonance by varying the thickness of
Maurizio Mattesini et al.
Journal of physics. Condensed matter : an Institute of Physics journal, 25(3), 035601-035601 (2012-12-12)
The magnetic properties, electronic band structure and Fermi surfaces of the hexagonal Cr(2)GeC system have been studied by means of both generalized gradient approximation (GGA) and the +U corrected method (GGA + U). The effective U value has been computed within the
Jin Liu et al.
Dalton transactions (Cambridge, England : 2003), 42(14), 5092-5099 (2013-02-13)
In this study, Zn2GeO4 hollow spheres were successfully fabricated by a template-engaged approach using zinc hydroxide carbonate (Zn4CO3(OH)6·H2O, ZHC) spheres as the template. During the hydrothermal process, Zn(2+) dissolved from the surface of the ZHC spheres could rapidly react with
Michael Oehme et al.
Optics express, 21(2), 2206-2211 (2013-02-08)
In this paper we investigate the influence of n-type doping in Ge light emitting diodes on Si substrates on the room temperature emission spectrum. The layer structures are grown with a special low temperature molecular beam epitaxy process resulting in

Articles

Technologies are an integral part of our lives and we rely on them for such things as communication, heating and cooling, transportation, and construction. Improvements to technologies have made what they do for us more precise, automated, efficient, and powerful.

The price of tellurium, a key component in many thermoelectric materials, has risen in recent years, leading to the search for more cost-effective substitutes. This article presents silicide materials as a cheaper potential alternative.

Higher transition metal silicides are very well-suited for anisotropic thermoelectric conversion. Essential anisotropy of the Seebeck coefficient, together with good mechanical properties, allows production of reliable anisotropic thermoelectric converters.

The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common hightech applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service