Direkt zum Inhalt
Merck
  • Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid.

Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid.

PloS one (2015-07-02)
Cristina Cattò, Silvia Dell'Orto, Federica Villa, Stefania Villa, Arianna Gelain, Alberto Vitali, Valeria Marzano, Sara Baroni, Fabio Forlani, Francesca Cappitelli
ZUSAMMENFASSUNG

The natural compound zosteric acid, or p-(sulfoxy)cinnamic acid (ZA), is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and screened against Escherichia coli to understand the structural requirements necessary for biofilm inhibition at sub-lethal concentrations. Considerations concerning the relationship between structure and anti-biofilm activity revealed that i) the para-sulfoxy ester group is not needed to exploit the anti-biofilm activity of the molecule, it is the cinnamic acid scaffold that is responsible for anti-biofilm performance; ii) the anti-biofilm activity of ZA derivatives depends on the presence of a carboxylate anion and, consequently, on its hydrogen-donating ability; iii) the conjugated aromatic system is instrumental to the anti-biofilm activities of ZA and its analogues. Using a protein pull-down approach, combined with mass spectrometry, the herein-defined active structure of ZA was matrix-immobilized, and was proved to interact with the E. coli NADH:quinone reductase, WrbA, suggesting a possible role of this protein in the biofilm formation process.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Dimethylsulfoxid, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, for molecular biology
Sigma-Aldrich
Glycerin, for molecular biology, ≥99.0%
Sigma-Aldrich
Dimethylsulfoxid, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethylsulfoxid, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Natriumchlorid, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Glycerin, ≥99.5%
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Dimethylsulfoxid, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Glycerin, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerin -Lösung, 83.5-89.5% (T)
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Glycerin, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)