Saltar al contenido
Merck
  • Decreased bone marrow stromal cells activity involves in unilateral anterior crossbite-induced early subchondral bone loss of temporomandibular joints.

Decreased bone marrow stromal cells activity involves in unilateral anterior crossbite-induced early subchondral bone loss of temporomandibular joints.

Archives of oral biology (2014-06-16)
Ting Yang, Jing Zhang, Yukun Cao, Mian Zhang, Lei Jing, Kai Jiao, Shibin Yu, Meiqing Wang
RESUMEN

Subchondral bone loss in mandibular condyles was reported to be induced by experimentally created unilateral anterior crossbite (UAC) which altered the occlusal load distribution and hereafter the temporomandibular joint (TMJ) remodelling process. However, the initial cellular responses are poorly understood. In the present study, changes in osteoblast and osteoclast activities in TMJ subchondral bone were investigated using the rats treated with UAC. Forty rats were randomly divided into UAC and control groups, and sampled at 2 weeks after the operation. Subchondral bone loss was evaluated by micro-CT. Osteoclast and osteoblast activities were analyzed by real-time PCR. The osteoblast differentiation of the locally isolated BMSCs from TMJ subchondral bone was assessed by Alizarin red staining. The migration of BMSCs was detected by transwell assays. Compared with the age-matched controls, TMJ subchondral bone loss was observed in the UAC-treated rats (p<0.05). The osteoblast activity evaluated by real-time PCR and osteoblast number revealed by immunohistochemical staining were reduced in the TMJ subchondral bone of UAC rats (p<0.05), and the capability of proliferation, migration and osteoblast differentiation were all decreased in the locally isolated BMSCs from the UAC group (p<0.05). The present data demonstrated an involvement of reduced BMSCs activity in the initiation of the mandibular subchondral bone loss at the early stage of installation of the aberrant prostheses.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Dexametasona, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
3-Isobutil-1-metilxantina, ≥99% (HPLC), powder
Sigma-Aldrich
Ácido L-ascórbico, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Ácido L-ascórbico, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Yoduro de propidio, ≥94.0% (HPLC)
Sigma-Aldrich
3-Isobutil-1-metilxantina, ≥99%, BioUltra
Sigma-Aldrich
Ácido L-ascórbico, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Dexametasona, ≥98% (HPLC), powder
Sigma-Aldrich
Ácido L-ascórbico, reagent grade, crystalline
USP
Ácido L-ascórbico, United States Pharmacopeia (USP) Reference Standard
Supelco
Ácido L-ascórbico, analytical standard
Sigma-Aldrich
Ácido L-ascórbico, reagent grade
Sigma-Aldrich
Ácido L-ascórbico, meets USP testing specifications
Sigma-Aldrich
Ácido L-ascórbico, 99%
Sigma-Aldrich
Dexametasona, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Ácido L-ascórbico, FCC, FG
Supelco
Ácido L-ascórbico, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Dexametasona, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ácido L-ascórbico, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Ácido L-ascórbico, ACS reagent, ≥99%
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
Dexametasona, meets USP testing specifications
Supelco
Dexametasona, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ácido L-ascórbico, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
Yoduro de propidio, ≥94% (HPLC)
Sigma-Aldrich
Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn-Asp-Lys-Tyr-Glu-Pro-Phe, ≥97% (HPLC)
Ácido L-ascórbico, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ácido L-ascórbico, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
Ácido L-ascórbico, tested according to Ph. Eur.
Supelco
Ácido L-ascórbico, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland