Skip to Content
Merck
All Photos(2)

Key Documents

P1802

Sigma-Aldrich

Pentacene

99%

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C22H14
CAS Number:
Molecular Weight:
278.35
Beilstein:
1912418
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99%

form

powder

mp

372-374 °C (subl.)

solubility

organic solvents: slightly soluble

Orbital energy

HOMO 5 eV 
LUMO 3 eV 

OPV Device Performance

ITO/pentacene/C60/BCP/Al

  • Short-circuit current density (Jsc): 15 mA/cm2
  • Open-circuit voltage (Voc): 0.36 V
  • Fill Factor (FF): 0.5
  • Power Conversion Efficiency (PCE): 2.7 %

semiconductor properties

P-type (mobility=0.4-3 cm2/V·s) (on/off ratio=1E5-1E8)

SMILES string

c1ccc2cc3cc4cc5ccccc5cc4cc3cc2c1

InChI

1S/C22H14/c1-2-6-16-10-20-14-22-12-18-8-4-3-7-17(18)11-21(22)13-19(20)9-15(16)5-1/h1-14H

InChI key

SLIUAWYAILUBJU-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Pentacene belongs to the class of fused polycyclic hydrocarbons that are a part of the acene family with five rings. It is majorly utilized in electronic applications due to its high hole mobility of 1200 cm2V−1s−1 and fluorescent absorption peak at the wavelength of 578 nm.
Pentacene is a popular organic semi conductor. Upon deposition on any insulating substrate, the molecules organize to form polycrystalline films. The pentacene films show good transport properties. The hydrogen atoms which surround the carbon backbone are less electronegative than the carbon backbone itself and lend some electron density to the delocalized pi-electron cloud. It can also form large crystals.

Application

Pentacene can be functionalized by treating it with poly(4-vinyl phenol) (PVP), which can be used to reduce the surface energy of organic thin film transistors (OTFTs) and increase the hole mobility by 109%. It is mainly used in the fabrication of field effect transistors, which can be doped with iodine to increase the threshold voltage up to 140 V.

Packaging

Bottomless glass bottle. Contents are inside inserted fused cone.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Bias stress instability in pentacene thin film transistors: Contact resistance change and channel threshold voltage shift.
Wang SD, et al.
Applied Physics Letters, 92(6), 063305-063305 (2008)
Young Jin Choi et al.
ACS nano, 13(7), 7877-7885 (2019-06-28)
This paper introduces a strategy to modulate a Schottky barrier formed at a graphene-semiconductor heterojunction. The modulation is performed by controlling the work function of graphene from a gate that is placed laterally away from the graphene-semiconductor junction, which we
Pentacene thin-film transistors with polymeric gate dielectric.
Puigdollars J, et al.
Organic Electronics, 5(1), 67-71 (2004)
Iodine doping enabled wide range threshold voltage modulation in pentacene transistors
Wang YW, et al.
Thin Solid Films, 669(3), 29-33 (2019)
Control of open-circuit voltage in organic photovoltaic cells by inserting an ultrathin metal-phthalocyanine layer
Kinoshita, Y.; Hasobe, T.; Murata, H.
Applied Physics Letters, 91, 083518-083518 (2007)

Articles

Intrinsically stretchable active layers for organic field-effect transistors (OFET) are discussed. Polymer structural modification & post-polymerization modifications are 2 methods to achieve this.

Solution-processed organic photovoltaic devices (OPVs) have emerged as a promising clean energy generating technology due to their ease of fabrication, potential to enable low-cost manufacturing via printing or coating techniques, and ability to be incorporated onto light weight, flexible substrates.

There is widespread demand for thin, lightweight, and flexible electronic devices such as displays, sensors, actuators, and radio-frequency identification tags (RFIDs). Flexibility is necessary for scalability, portability, and mechanical robustness.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service