Skip to Content
Merck
All Photos(1)

Key Documents

900366

Sigma-Aldrich

Gold, nanorods

25 nm diameter, λmax, 550 nm, dispersion in H2O, citrate capped

Synonym(s):

Au Nanorods

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12141717
NACRES:
NA.23

Quality Level

form

dispersion
dispersion in H2O
nanorod

concentration

50 μg/mL in H2O

L

38-42 nm

diameter

25 nm

pH

7

λmax

550 nm

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

  • Longitudinal peak = 550 nm (± 20 nm)
  • Longitudinal absorbance OD = 1
  • Transverse peak = 525 nm (± 5 nm)
  • Transverse absorbance OD = 0.9

Application

Owing to the excellent optical properties arising from the surface plasmon resonance, the gold nanorods find applications in biomedical imaging, drug delivery and photothermal treatment. The citrate capped nanorods are non-cytotoxic compared to the CTAB capped nanorods and are well suited for the biomedical applications.

Caution

Do not freeze.
Keep container tightly closed in a dry and well-ventilated place.
Recommended storage temperature 2-8 C.

Legal Information

This product was produced under the methods claimed in U.S. Pat. Nos. 8,956,440 and 8,241,922

WGK

nwg

Flash Point(F)

>230.0 °F

Flash Point(C)

> 110 °C


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Singh M, et al.
Journal of Biomaterials and Nanobiotechnology, 12, 481-481 (2016)
Prit Manish Lakhani et al.
Nanotechnology, 26(43), 432001-432001 (2015-10-09)
Photothermal therapy, also referred to as optical hyperthermia or photothermal ablation, is an emerging strategy for treating solid tumours. Colloidal gold converts the absorbed light into localized heat via a non-radiative mechanism, surface plasmon resonance, which ablates the solid tumours.
Mohan Singh et al.
Journal of biomedical nanotechnology, 12(3), 481-490 (2016-06-10)
Gold nanoparticles are chemically fabricated and tuned to strongly absorb near infrared (NIR) light, enabling deep optical penetration and therapy within human tissues, where sufficient heating induces tumour necrosis. In our studies we aim to establish the optimal gold nanorod

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service