Skip to Content
Merck
All Photos(1)

Key Documents

726249

Sigma-Aldrich

O-(2-Azidoethyl)nonadecaethylene glycol

≥95% (oligomer purity)

Synonym(s):

Azido-PEG (n=19)

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C40H81N3O20
Molecular Weight:
924.08
MDL number:
UNSPSC Code:
12352200
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

≥95% (oligomer purity)

form

solid

storage temp.

2-8°C

SMILES string

OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCN=[N+]=[N-]

InChI

1S/C40H81N3O20/c41-43-42-1-3-45-5-7-47-9-11-49-13-15-51-17-19-53-21-23-55-25-27-57-29-31-59-33-35-61-37-39-63-40-38-62-36-34-60-32-30-58-28-26-56-24-22-54-20-18-52-16-14-50-12-10-48-8-6-46-4-2-44/h44H,1-40H2

InChI key

FRLHZVCZJNPUMK-UHFFFAOYSA-N

Packaging

Bottomless glass bottle. Contents are inside inserted fused cone.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Articles

Circulatory half-life is a key success factor for new drugs. In this respect, PEGylation or PEG-ing—the modification of potential candidates ranging from non-peptidic small molecules to peptides and proteins, antibody fragments, aptamers, and saccharides or oligonucleotides with polyethylene glycol chains—offers numerous advantages.

Professor Randal Lee (University of Houston, USA) discusses design considerations for iron oxide magnetic nanospheres and nanocubes used for biosensing, including synthetic procedures, size, and shape. The effects of these variables are discussed for various volumetric-based and surface-based detection schemes.

Kanjiro Miyata (The University of Tokyo, Japan) provides insights on the rational design of polymeric materials for “smart” oligonucleotide delivery.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service