Skip to Content
Merck
All Photos(5)

Key Documents

716944

Sigma-Aldrich

Gold nanowires

diam. × L 30 nm × 4,500 nm, dispersion (H2O), contains CTAB as stabilizer

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Au
Molecular Weight:
196.97
UNSPSC Code:
12352302
NACRES:
NA.23

form

dispersion (H2O)
nanowires

Quality Level

contains

CTAB as stabilizer

concentration

≥50 μg/mL

diam. × L

30 nm × 4,500 nm

pH

3.0-5.0

density

1.00 g/mL at 25 °C

Mw/Mn

(<20% CV, monodispersity)
>95 (nanowires)

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

Physical properties

Do not freeze, quality lost if frozen even once. Please keep at approximately 4 °C

Legal Information

This product was produced under the methods claimed in U.S. Pat. Nos. 8,956,440 and 8,241,922

Hazard Statements

Precautionary Statements

Hazard Classifications

Aquatic Chronic 3

Storage Class Code

12 - Non Combustible Liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Articles

Gold nanostructures such as nanorods, nanowires and microgold have found applications in exciting fields such as biomedical engineering, catalysis and diagnostics.

Sustainable, environment-friendly, and clean energy sources with sufficiently high production efficiency for practical application are highly desirable to meet the energy challenge of the 21st century due to the world′s increasing energy demand.

In many technologies, performance requirements drive device dimensions below the scale of electron mean free paths (λe). This trend has increased scientific interest and technological importance of electrical resistivities at the nanoscale.

Among various ceramics, one-dimensional (1-D) piezoelectric ceramics have attracted significant scientific attention for use in energy harvesting.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service