Skip to Content
Merck
All Photos(1)

Key Documents

276332

Sigma-Aldrich

Rubidium

ingot, 99.6% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Rb
CAS Number:
Molecular Weight:
85.47
EC Number:
MDL number:
UNSPSC Code:
11101711
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.6% trace metals basis

form

ingot

reaction suitability

reagent type: reductant

packaging

pkg of Packaged in: Breakseal Ampule

resistivity

11.0 μΩ-cm, 20°C

impurities

0.2-0.4% Cs

bp

686 °C (lit.)

mp

38-39 °C (lit.)

density

1.53 g/mL at 25 °C (lit.)

SMILES string

[Rb]

InChI

1S/Rb

InChI key

IGLNJRXAVVLDKE-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Rubidium is a highly electropositive alkaline metal that can be obtained as a byproduct of refining lithium from lepidolite. It is used in photomultiplier tubes, laser cooling, atomic clock, photocell, nuclear medicine, and specialty glass.

Application

Rubidium can be used as a starting material to synthesize rubidium hydrazinidoborane (RbN2H3BH3).
It can also be used as a reducing agent to synthesize reduced polycyclic aromatic hydrocarbons.

Pictograms

FlameCorrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Skin Corr. 1B - Water-react 1

Supplementary Hazards

Storage Class Code

4.3 - Hazardous materials which set free flammable gases upon contact with water

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Marco Papagno et al.
ACS nano, 6(10), 9299-9304 (2012-10-02)
By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows the synthesis of two distinct phases of bilayer graphene with different properties.
Liron Stern et al.
Optics express, 20(27), 28082-28093 (2012-12-25)
In this paper we analyze the transmission and time delay properties of light propagating through a microring resonator (MRR) consisting of a solid core waveguide surrounded by an atomic vapor cladding. Using the atomic effective susceptibility of Rubidium we derive
Katarzyna Leszczyńska-Sejda et al.
Materials (Basel, Switzerland), 12(7) (2019-04-10)
Technology used to produce high purity anhydrous rubidium perrhenate on an industrial scale from high purity perrhenic acid and rubidium nitrate by the ion-exchange method is described in this paper. This material is dedicated to catalyst preparation, therefore, strict purity
Ismail Ben Soussia et al.
Nature communications, 10(1), 787-787 (2019-02-17)
Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here, we reveal the conserved role played by a single amino acid position (TM2.6) located in the second transmembrane domain
Nan-Nan Bu et al.
Biosensors & bioelectronics, 43, 200-204 (2013-01-15)
Restricted target accessibility and surface-induced perturbation of the aptamer structure are the main limitations in single-stranded DNA aptamer-based electrochemical sensors. Chemical labeling of the aptamer with a probe at the end of aptamer is inefficient and time-consuming. In this work

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service