Skip to Content
Merck
  • RACK1 modulates apoptosis induced by sorafenib in HCC cells by interfering with the IRE1/XBP1 axis.

RACK1 modulates apoptosis induced by sorafenib in HCC cells by interfering with the IRE1/XBP1 axis.

Oncology reports (2015-04-23)
Ti Zhou, Xing Lv, Xin Guo, Bai Ruan, Dong Liu, Rui Ding, Yuan Gao, Jie Ding, Kefeng Dou, Yong Chen
ABSTRACT

Sorafenib is one of the preferred drugs for the treatment of advanced primary hepatocellular carcinoma (HCC). However, its side-effects and acquired resistance limit its use. The unfolded protein response (UPR) induced by chemotherapeutics has been demonstrated to be required for tumor cells to maintain malignancy and therapy resistance. Activation of the IRE1/XBP1 pathway during the UPR is important for tumor survival under pathophysiological conditions. In the present study, we found that the UPR was activated and RACK1 was overexpressed in three human HCC cell lines and in HCC samples. Activation of the IRE1/XBP1 signaling pathway plays a protective role when HCC cells encounter endoplasmic reticulum (ER) stress due to in vitro sorafenib treatment. We then found that the interaction between IRE1 and RACK1 was essential for the activation of IRE1 signaling in sorafenib-treated cells. Exogenous overexpression of RACK1 enhanced the phosphorylation level of IRE1 and increased XBP1 mRNA splicing activity, which protected the HCC cells from sorafenib-induced apoptosis. However, the re-expression of RACK1 led HCC cells to regain susceptibility to sorafenib-induced apoptosis. Taken together, the present study suggests that the RACK1/IRE1 complex may contribute to activation of the UPR in HCC cells. Targeting RACK1 in combination with sorafenib administration is a potential strategy for clinical trials of advanced HCC treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting mouse Gnb2l1
Sigma-Aldrich
MISSION® esiRNA, targeting human RACK1
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥98.5% (GC)
Sigma-Aldrich
MISSION® esiRNA, targeting human ERN1
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)