Skip to Content
Merck
  • Derivation of keratinocytes from chicken embryonic stem cells: establishment and characterization of differentiated proliferative cell populations.

Derivation of keratinocytes from chicken embryonic stem cells: establishment and characterization of differentiated proliferative cell populations.

Stem cell research (2015-02-24)
Mathilde Couteaudier, Laëtitia Trapp-Fragnet, Nicolas Auger, Katia Courvoisier, Bertrand Pain, Caroline Denesvre, Jean-François Vautherot
ABSTRACT

A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes. Although chicken embryonic stem cells had been obtained in the 1990s, few differentiation studies toward the ectodermal lineage were reported. Consequently, we explored the differentiation of chicken embryonic stem cells toward the keratinocyte lineage by using a combination of stromal induction, ascorbic acid, BMP4 and chicken serum. During the induction period, we observed a downregulation of pluripotency markers and an upregulation of epidermal markers. Three homogenous cell populations were derived, which were morphologically similar to chicken primary keratinocytes, displaying intracellular lipid droplets in almost every pavimentous cell. These cells could be serially passaged without alteration of their morphology and showed gene and protein expression profiles of epidermal markers similar to chicken primary keratinocytes. These cells represent an alternative to the isolation of chicken primary keratinocytes, being less cumbersome to handle and reducing the number of experimental animals used for the preparation of primary cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
Ethanol, anhydrous, denatured
Sigma-Aldrich
Selenium, powder, −100 mesh, ≥99.5% trace metals basis
Sigma-Aldrich
Selenium, pellets, <5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
Propidium iodide solution
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Selenium, powder, −100 mesh, 99.99% trace metals basis
Sigma-Aldrich
Hydrocortisone, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Ribonuclease A from bovine pancreas, (Solution of 50% glycerol, 10mM Tris-HCL pH 8.0)
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrocortisone, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Sigma-Aldrich
Hydrocortisone, ≥98% (HPLC)
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Supelco
L-Ascorbic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Hydrocortisone, British Pharmacopoeia (BP) Assay Standard
Sigma-Aldrich
Ethanol, absolute, denaturated with 0.5-1.5 Vol.% 2-butanone and approx. 0.001% Bitrex (GC), ≥98% (GC)
Hydrocortisone, European Pharmacopoeia (EP) Reference Standard
Supelco
Adenine, Pharmaceutical Secondary Standard; Certified Reference Material
Selenium, foil, 25x25mm, thickness 3mm, 99.95%
USP
Hydrocortisone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
L-Ascorbic acid, 99%