Skip to Content
Merck
  • Farnesoid X receptor antagonizes JNK signaling pathway in liver carcinogenesis by activating SOD3.

Farnesoid X receptor antagonizes JNK signaling pathway in liver carcinogenesis by activating SOD3.

Molecular endocrinology (Baltimore, Md.) (2014-12-17)
Yan-Dong Wang, Wei-Dong Chen, Cunbao Li, Cong Guo, Yanyan Li, Hui Qi, Hailing Shen, Jing Kong, Xuecheng Long, Frank Yuan, Xichun Wang, Wendong Huang
ABSTRACT

The farnesoid X receptor (FXR) is a key metabolic and homeostatic regulator in the liver. In the present work, we identify a novel role of FXR in antagonizing c-Jun N-terminal kinase (JNK) signaling pathway in liver carcinogenesis by activating superoxide dismutase 3 (SOD3) transcription. Compared with wild-type mouse liver, FXR(-/-) mouse liver showed elevated JNK phosphorylation. JNK1 deletion suppressed the increase of diethylnitrosamine-induced tumor number in FXR(-/-) mice. These results suggest that JNK1 plays a key role in chemical-induced liver carcinogenesis in FXR(-/-) mice. We found that ligand-activated FXR was able to alleviate H₂O₂or tetradecanoylphorbol acetate-induced JNK phosphorylation in human hepatoblastoma (HepG2) cells or mouse primary hepatocytes. FXR ligand decreased H₂O₂-induced reactive oxygen species (ROS) levels in wild-type but not FXR(-/-) mouse hepatocytes. FXR knockdown abolished the inhibition of 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-Benzoic acid (GW4064) on JNK phosphorylation and ROS production induced by H₂O₂in HepG2 cells. The gene expression of SOD3, an antioxidant defense enzyme, was increased by FXR activation in vitro and in vivo. An FXR-responsive element, inverted repeat separated by 1 nucleotide in SOD3 promoter, was identified by a combination of transcriptional reporter assays, EMSAs, and chromatin immunoprecipitation assays, which indicated that SOD3 could be a direct FXR target gene. SOD3 knockdown abolished the inhibition of GW4064 on JNK phosphorylation induced by H₂O₂in HepG2 cells. In summary, FXR may regulate SOD3 expression to suppress ROS production, resulting in decreasing JNK activity. These results suggest that FXR, as a novel JNK suppressor, may be an attractive therapeutic target for liver cancer treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chenodeoxycholic acid
Sigma-Aldrich
JNK1, active, GST tagged from mouse, PRECISIO® Kinase, recombinant, expressed in baculovirus infected Sf9 cells, ≥90% (SDS-PAGE), buffered aqueous glycerol solution
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Nr1h4
Sigma-Aldrich
MISSION® esiRNA, targeting human NR1H4
Chenodeoxycholic acid, European Pharmacopoeia (EP) Reference Standard
Supelco
Mettler-Toledo Calibration substance ME 18555, Benzoic acid, analytical standard, (for the calibration of the melting point system), traceable to primary standards (LGC)
USP
Benzoic acid, United States Pharmacopeia (USP) Reference Standard
Benzoic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Benzoic acid, ACS reagent, ≥99.5%
Sigma-Aldrich
N-Nitrosodiethylamine, ≥99.0% (GC)
Sigma-Aldrich
Benzoic acid, ReagentPlus®, 99%
Supelco
N-Nitrosodiethylamine, analytical standard
Sigma-Aldrich
Benzoic acid, purified by sublimation, ≥99%
Supelco
Benzoic acid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Benzoic acid, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Benzoic acid, meets analytical specification of Ph. Eur., BP, USP, FCC, E210, 99.5-100.5% (alkalimetric)
Supelco
Benzoic acid, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Benzoic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9% (alkalimetric)
Sigma-Aldrich
N-Nitrosodiethylamine, ISOPAC®
Sigma-Aldrich
N-Nitrosodiethylamine, liquid
Supelco
Benzoic acid, Standard for quantitative NMR, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Sod3
Supelco
Melting point standard 121-123°C, analytical standard
Sigma-Aldrich
Benzoic acid, ≥99.5%, FCC, FG