Skip to Content
Merck
  • Hyaluronan production enhances shedding of plasma membrane-derived microvesicles.

Hyaluronan production enhances shedding of plasma membrane-derived microvesicles.

Experimental cell research (2013-06-05)
Kirsi Rilla, Sanna Pasonen-Seppänen, Ashik J Deen, Ville V T Koistinen, Sara Wojciechowski, Sanna Oikari, Riikka Kärnä, Genevieve Bart, Kari Törrönen, Raija H Tammi, Markku I Tammi
ABSTRACT

Many cell types secrete plasma membrane-bound microvesicles, suggested to play an important role in tissue morphogenesis, wound healing, and cancer spreading. However, the mechanisms of their formation have remained largely unknown. It was found that the tips of long microvilli induced in cells by overexpression of hyaluronan synthase 3 (HAS3) were detach into the culture medium as microvesicles. Moreover, several cell types with naturally active hyaluronan synthesis released high numbers of plasma membrane-derived vesicles, and inhibition of hyaluronan synthesis reduced their formation. The vesicles contained HAS, and were covered with a thick hyaluronan coat, a part of which was retained even after purification with high-speed centrifugation. HAS3 overexpressing MDCK cells cultured in a 3-D matrix as epithelial cysts released large amounts of HAS- and hyaluronan-positive vesicles from their basal surfaces into the extracellular matrix. As far as we know, hyaluronan synthesis is one of the first molecular mechanisms shown to stimulate the production of microvesicles. The microvesicles have a potential to deliver the hyaluronan synthase machinery and membrane and cytoplasmic materials to other cells, influencing tissue regeneration, inflammation and tumor progression.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 15,000-30,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 2,000,000-2,400,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,000,000-1,250,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 30,000-50,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,500,000-1,750,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,200
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 2,000,000-2,200,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 300,000-500,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 8,000-15,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 10,000-30,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 120,000-350,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 70,000-120,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 50,000-70,000
Sigma-Aldrich
Hyaluronic acid sodium salt from bovine vitreous humor
Sodium hyaluronate, BRP, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus zooepidemicus, bacterial glycosaminoglycan polysaccharide
Sigma-Aldrich
Hyaluronic acid sodium salt from rooster comb, avian glycosaminoglycan polysaccharide
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, bacterial glycosaminoglycan polysaccharide