Skip to Content
Merck
  • Disruption of the lipolysis pathway results in stem cell death through a sterile immunity-like pathway in adult Drosophila.

Disruption of the lipolysis pathway results in stem cell death through a sterile immunity-like pathway in adult Drosophila.

Cell reports (2022-06-23)
Poonam Aggarwal, Zilun Liu, Guang Qian Cheng, Shree Ram Singh, Chunmei Shi, Ying Chen, Ling V Sun, Steven X Hou
ABSTRACT

We previously showed that the Arf1-mediated lipolysis pathway sustains stem cells and cancer stem cells (CSCs); its ablation resulted in necrosis of stem cells and CSCs, which further triggers a systemic antitumor immune response. Here we show that knocking down Arf1 in intestinal stem cells (ISCs) causes metabolic stress, which promotes the expression and translocation of ISC-produced damage-associated molecular patterns (DAMPs; Pretaporter [Prtp] and calreticulin [Calr]). DAMPs regulate macroglobulin complement-related (Mcr) expression and secretion. The secreted Mcr influences the expression and localization of enterocyte (EC)-produced Draper (Drpr) and LRP1 receptors (pattern recognition receptors [PRRs]) to activate autophagy in ECs for ATP production. The secreted ATP possibly feeds back to kill ISCs by activating inflammasome-like pyroptosis. We identify an evolutionarily conserved pathway that sustains stem cells and CSCs, and its ablation results in an immunogenic cascade that promotes death of stem cells and CSCs as well as antitumor immunity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium 4-Phenylbutyrate, A novel anti-neoplastic agent and transcriptional regulator.
Sigma-Aldrich
Bafilomycin A1 from Streptomyces griseus, ≥90% (HPLC)