Skip to Content
Merck
  • Mechanistic basis and efficacy of targeting the β-catenin-TCF7L2-JMJD6-c-Myc axis to overcome resistance to BET inhibitors.

Mechanistic basis and efficacy of targeting the β-catenin-TCF7L2-JMJD6-c-Myc axis to overcome resistance to BET inhibitors.

Blood (2020-02-19)
Dyana T Saenz, Warren Fiskus, Christopher P Mill, Dimuthu Perera, Taghi Manshouri, Bernardo H Lara, Vrajesh Karkhanis, Sunil Sharma, Stephen K Horrigan, Prithviraj Bose, Tapan M Kadia, Lucia Masarova, Courtney D DiNardo, Gautam Borthakur, Joseph D Khoury, Koichi Takahashi, Srividya Bhaskara, Charles Y Lin, Michael R Green, Cristian Coarfa, Craig M Crews, Srdan Verstovsek, Kapil N Bhalla
ABSTRACT

The promising activity of BET protein inhibitors (BETi's) is compromised by adaptive or innate resistance in acute myeloid leukemia (AML). Here, modeling of BETi-persister/resistance (BETi-P/R) in human postmyeloproliferative neoplasm (post-MPN) secondary AML (sAML) cells demonstrated accessible and active chromatin in specific superenhancers/enhancers, which was associated with increased levels of nuclear β-catenin, TCF7L2, JMJD6, and c-Myc in BETi-P/R sAML cells. Following BETi treatment, c-Myc levels were rapidly restored in BETi-P/R sAML cells. CRISPR/Cas9-mediated knockout of TCF7L2 or JMJD6 reversed BETi-P/R, whereas ectopic overexpression conferred BETi-P/R in sAML cells, confirming the mechanistic role of the β-catenin-TCF7L2-JMJD6-c-Myc axis in BETi resistance. Patient-derived, post-MPN, CD34+ sAML blasts exhibiting relative resistance to BETi, as compared with sensitive sAML blasts, displayed higher messenger RNA and protein expression of TCF7L2, JMJD6, and c-Myc and following BETi washout exhibited rapid restoration of c-Myc and JMJD6. CRISPR/Cas9 knockout of TCF7L2 and JMJD6 depleted their levels, inducing loss of viability of the sAML blasts. Disruption of colocalization of nuclear β-catenin with TBL1 and TCF7L2 by the small-molecule inhibitor BC2059 combined with depletion of BRD4 by BET proteolysis-targeting chimera reduced c-Myc levels and exerted synergistic lethality in BETi-P/R sAML cells. This combination also reduced leukemia burden and improved survival of mice engrafted with BETi-P/R sAML cells or patient-derived AML blasts innately resistant to BETi. Therefore, multitargeted disruption of the β-catenin-TCF7L2-JMJD6-c-Myc axis overcomes adaptive and innate BETi resistance, exhibiting preclinical efficacy against human post-MPN sAML cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
BC-2059, ≥98% (HPLC)