Skip to Content
Merck
  • In Vitro Modelling of Barrier Impairment Associated with Gastro-Oesophageal Reflux Disease (GERD).

In Vitro Modelling of Barrier Impairment Associated with Gastro-Oesophageal Reflux Disease (GERD).

Clinical and experimental gastroenterology (2021-09-17)
Marisa Meloni, Paolo Buratti, Francesco Carriero, Laura Ceriotti
ABSTRACT

A novel experimental model based on a 3D reconstructed human oesophageal epithelium model (HO2E) has been developed to investigate the structural and functional changes of the oesophageal epithelium following exposure to a solution of HCl 0.1 N (pH = 1.2) mirroring GERD microenvironment condition. The barrier structure modification after the exposure to the acid solution on HO2E tissues was investigated immediately after damage induction and after 1 hour post incubation and compared to HO2E tissues exposed to phosphate buffered saline solution. Immunofluorescence (IF) was applied to quantify the expression and localization of barrier function proteins: Claudin-1 (CLDN-1), Claudin-4 (CLDN-4), Zonulin-1 (ZO-1), E-Cadherin and Mucin-1 (MUC1). Barrier functionality was measured by TEER. In the acidic microenvironment, TEER measurement has shown some limitations and results were not applicable, whereas the evaluation of protein localization and quantification provided clear and robust evidence of the damage which occurred to the epithelium barrier structure. CLDN-4 expression significantly decreased after exposure to acid. ZO-1 protein appeared upregulated immediately after exposure to HCl and was mainly localized in the cytoplasm and not on the cell membrane. This different localization was also observed for CLND-1. CLDN-1, MUC1 and, to a lower extent, ZO-1 expression increased during the post-incubation period. The relevant tissue biomarkers identified, CLDN-1 and MUC1, can be used to monitor TJ structure and epithelial barrier recovery after acid-induced damage which, in our experimental conditions, were non-destructive and suitable for recovery studies. The established model can be useful to investigate the mechanism of action of formulations acting on this specific pathophysiological condition and/or designed to potentiate the physiological defense mechanisms of oesophageal mucosa.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-MUC1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-CDH1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution