Skip to Content
Merck
  • Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR.

Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR.

eLife (2019-12-25)
Niko Amin-Wetzel, Lisa Neidhardt, Yahui Yan, Matthias P Mayer, David Ron
ABSTRACT

Coupling of endoplasmic reticulum (ER) stress to dimerisation-dependent activation of the UPR transducer IRE1 is incompletely understood. Whilst the luminal co-chaperone ERdj4 promotes a complex between the Hsp70 BiP and IRE1's stress-sensing luminal domain (IRE1LD) that favours the latter's monomeric inactive state and loss of ERdj4 de-represses IRE1, evidence linking these cellular and in vitro observations is presently lacking. We report that enforced loading of endogenous BiP onto endogenous IRE1α repressed UPR signalling in CHO cells and deletions in the IRE1α locus that de-repressed the UPR in cells, encode flexible regions of IRE1LD that mediated BiP-induced monomerisation in vitro. Changes in the hydrogen exchange mass spectrometry profile of IRE1LD induced by ERdj4 and BiP confirmed monomerisation and were consistent with active destabilisation of the IRE1LD dimer. Together, these observations support a competition model whereby waning ER stress passively partitions ERdj4 and BiP to IRE1LD to initiate active repression of UPR signalling.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexokinase from Saccharomyces cerevisiae, Type F-300, lyophilized powder, ≥130 units/mg protein (biuret)
Sigma-Aldrich
(+)-Biotin N-hydroxysuccinimide ester, ≥98% (HPLC), powder
Sigma-Aldrich
Origami B(DE3) Competent Cells - Novagen, Origami B host strains carry the same mutations as the original Origami strain, except that they are derived from a lacZY mutant of BL21 to enable precise control of expression levels using IPTG.
Sigma-Aldrich
SIGMAFAST Protease Inhibitor Cocktail Tablets, EDTA-Free, for use in purification of Histidine-tagged proteins