- Highly Fluorinated Barium Titanate Nanoparticle Dispersion for Fabrication of Lithographically Patterned Thin Films.
Highly Fluorinated Barium Titanate Nanoparticle Dispersion for Fabrication of Lithographically Patterned Thin Films.
We report the synthesis, characterization, and photopatterning of high-k inorganic nanoparticles that are covered with highly fluorinated carboxylic acid and, as a result, are solution-processable in fluorous liquids. Barium titanate (BTO) nanoparticles, 7-8 nm in diameter, were prepared under solvothermal conditions and were surface-modified with perfluoroalkyl ether-type carboxylic acid molecules via ligand-exchange reactions. Thin films with a high dielectric constant (9.27 at 1 kHz) were achieved by spin-coating homogeneous solutions of BTO nanoparticles in a fluorous solvent (HFE-7500). Additionally, electron-beam lithography and photolithography were applied to the thin films of BTO nanoparticles, yielding BTO patterns with scales of 300 nm and 5 μm, respectively. Thus, an approach for a chemically non-damaging solution process of inorganic materials for device implementation was successfully demonstrated.