Skip to Content
Merck
  • Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides.

Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides.

Nano letters (2019-09-19)
Aleksandr Barulin, Jean-Benoît Claude, Satyajit Patra, Nicolas Bonod, Jérôme Wenger
ABSTRACT

Single molecule detection provides detailed information about molecular structures and functions but it generally requires the presence of a fluorescent marker which can interfere with the activity of the target molecule or complicate the sample production. Detecting a single protein with its natural UV autofluorescence is an attractive approach to avoid all the issues related to fluorescence labeling. However, the UV autofluorescence signal from a single protein is generally extremely weak. Here, we use aluminum plasmonics to enhance the tryptophan autofluorescence emission of single proteins in the UV range. Zero-mode waveguide nanoapertures enable the observation of the UV fluorescence of single label-free β-galactosidase proteins with increased brightness, microsecond transit times, and operation at micromolar concentrations. We demonstrate quantitative measurements of the local concentration, diffusion coefficient, and hydrodynamic radius of the label-free protein over a broad range of zero-mode waveguide diameters. Although the plasmonic fluorescence enhancement has generated a tremendous interest in the visible and near-infrared parts of the spectrum, this work pushes further the limits of plasmonic-enhanced single molecule detection into the UV range and constitutes a major step forward in our ability to interrogate single proteins in their native state at physiological concentrations.