Skip to Content
Merck
HomeMILLIPLEX® Multiplex for Luminex® ImmunoassaysMultiplexing in Vet Med | MILLIPLEX® Assays

Multiplexing in Vet Med | MILLIPLEX® Assays

Research in veterinary medicine and animal health is crucial to the protection of both animal and human health, and the advancement of science. Explore the benefits of using biomarker detection multiplex immunoassays, such as MILLIPLEX® multiplex assays, for laboratory, companion, and agricultural animal research.

Benefits of Using Biomarker Detection Multiplex Immunoassays in Animal Research

Animal health research encompasses many different areas including veterinary medicine, animal models for laboratory studies, as well as companion and agricultural animal studies. Biomarker detection multiplex immunoassays can offer benefits for this laboratory, companion, and agricultural animal research. With multiplexing, researchers can save valuable time, money, and sample volume while dramatically increasing the number of data points generated from a single assay.

MILLIPLEX® Multiplex Assays for Veterinary Medicine and Animal Health Research

MILLIPLEX® multiplex assays, based on Luminex® xMAP® technology, enable scientists studying veterinary medicine, animal health, and animal models, as well as human health, to understand complex biological systems and processes. Our kit offerings span across companion, agricultural, and research animals, and humans.

MILLIPLEX® kits can analyze the following animal species:

Laboratory Animals

  • Mouse
  • Rat
  • Non-Human Primate

Companion Animals

  • Canine
  • Feline

Agricultural Animals

  • Bovine
  • Equine
  • Porcine
  • Ovine
  • Chicken

These highly verified assays help save time and sample volume while producing the highest quality data (Table 1).

Table 1.Comparison of MILLIPLEX® assays vs. traditional ELISAs.

Examples of Cytokine Multiplex Analysis for Agricultural Animal Research

View examples of ovine, chicken, and bovine cytokine multiplex assays being used in agricultural animal research below.

Ovine

The MILLIPLEX® Ovine Cytokine/Chemokine Panel 1 is the first multiplex panel designed to analyze your choice of up to 14 ovine cytokines within the same sample. See examples of data using this panel in Figures 1 and 2.

Graph of analyte concentrations. Ovine PBMC (BioIVT, Hicksville, NY) were stimulated for 48 hours with LPS or Concanavalin A (Con-A) or left unstimulated. Cell supernatants were collected and assayed according to protocol in the MILLIPLEX® Ovine Cytokine Chemokine Panel 1 (n=3, mean). The analyte IL-8 reached saturation on the standard curve for this sample group.

Figure 1.Ovine PBMC (BioIVT, Hicksville, NY) were stimulated for 48 hours with LPS or Concanavalin A (Con-A) or left unstimulated. Cell supernatants were collected and assayed according to the protocol in the MILLIPLEX® Ovine Cytokine/Chemokine Panel 1 (n=3, mean). The analyte IL-8 reached saturation on the standard curve for this sample group.

Graph showing ovine milk cytokine concentrations. MILLIPLEX® ovine milk samples (BioIVT, Hicksville, NY) were assayed according to protocol in the Ovine Cytokine Chemokine Panel 1 (n=10, mean).

Figure 2.MILLIPLEX® ovine milk samples (BioIVT, Hicksville, NY) were assayed according to the protocol in the Ovine Cytokine/Chemokine Panel 1 (n=10, mean).

Chicken

The MILLIPLEX® Chicken Cytokine/Chemokine Panel 1 is the first multiplex panel designed to analyze your choice of up to 12 chicken cytokines within the same sample. See example data using this panel below (Figure 3).

Graph showing analyte data from normal healthy chicken plasma and serum samples (n=8 each) assayed according to the overnight protocol of the MILLIPLEX® Chicken Cytokine/Chemokine Panel. “ND=n” indicates the number of samples for which the analyte was not detected in the assay. The analyte IL-21 was not detected in these samples, however, it is expected that certain disease/inflammation states will show IL-21 values in assay.

Figure 3.Normal healthy New Hampshire chicken plasma and serum samples (n=8 each) were sourced commercially and assayed according to the overnight protocol of the MILLIPLEX® Chicken Cytokine/Chemokine Panel 1. “ND=n” indicates the number of samples for which the analyte was not detected in the assay. The analyte IL-21 was not detected in these samples, however, it is expected that certain disease/inflammation states will show IL-21 values in assay.

Bovine

The MILLIPLEX® Bovine Cytokine/Chemokine Panel 1 is the first multiplex panel designed to analyze up to 15 bovine cytokines within the same sample. Figures 4 and 5 show examples of analyte data from two sample types.

Graph showing analyte data for bovine PBMCs (BioIVT, Hicksville, NY) were treated with LPS or Concanavalin A (Con A) for 48 hr, after which, cell-free samples were collected and assayed with the MILLIPLEX® Bovine Cytokine/Chemokine Panel 1 (n=3 mean ± SEM). *Notes saturation on the standard curve for these sample groups.

Figure 4. Bovine PBMCs (BioIVT, Hicksville, NY) were treated with LPS or Concanavalin A (Con A) for 48 hours, after which, cell-free samples were collected and assayed with the MILLIPLEX® Bovine Cytokine/Chemokine Panel 1 (n=3 mean ± SEM). *Notes saturation on the standard curve for these sample groups.

Graph showing analyte data of serum samples obtained from BioIVT (Hicksville, NY). Samples were assayed according to MILLIPLEX® Bovine Cytokine/Chemokine Panel 1 protocol.

Figure 5.Serum samples were obtained from BioIVT (Hicksville, NY). Samples were assayed according to protocol in the MILLIPLEX® Bovine Cytokine/Chemokine Panel 1.

Example of Pituitary Hormone Multiplex Analysis for Companion Animal Research

View an example of canine pituitary hormone multiplex assays being used in companion animal research below.

Quantitate canine pituitary hormones in serum, plasma, and cell/tissue culture samples of up to six analytes with the MILLIPLEX® Canine Pituitary Expanded Panel. See example analyte data in Figure 6.

Graph showing analyte data of normal canine serum/plasma samples that were assayed using MILLIPLEX® Canine Pituitary Expanded Panel. Red circles show where each sample fell upon the indicated analyte standard curve.

Figure 6.Commercially sourced normal canine serum (n=22) and plasma (n=27) samples were assayed according to protocol using the MILLIPLEX® Canine Pituitary Expanded Panel. Magenta circles show where each sample fell upon the indicated analyte standard curve.

Featured Customer Interviews

Interview on Zika Research with a Rat Cytokine Panel

Watch this interview with Dr. Mukesh Kumar on his Zika research using the MILLIPLEX® Rat Cytokine/Chemokine Magnetic Bead Panel and read his research in the Virology Journal publication.

Q&A on Agricultural Research Using A Bovine Cytokine/Chemokine Multiplex Panel

Read our interview with Dr. Kyle McLean, PAS, Assistant Professor in Ruminant Reproduction, from the Department of Animal Science at the University of Tennessee Institute of Agriculture to see how MILLIPLEX® panels helped advance his agricultural animal research.

Briefly describe your current research.
My research focuses on ruminant reproduction with a particular focus on the uterine environment, placental development, and fetal programming in early gestation.

Specifically, how do cows fit into your research?
Cows are the focus of my research.

Why did you choose cows?
It has been and will always be the focus of my research due to the economic importance and biomedical potential of cattle.

How does using the MILLIPLEX® Bovine Cytokine/Chemokine Panel 1 help your research and/or workflow?
This panel has allowed me to quantify more cytokines with less sample and more quickly than anything else. It has also allowed us to develop a profile for the uterine environment.

What other great work is being done in your laboratory?
We are also establishing the amino acid profile of the uterine environment as well as looking into the impacts of nutrition on the composition of seminal plasma in bulls.

If you could solve any challenge in research, what would it be?
Understand the mechanisms behind the establishment of pregnancy and establish the nutrient requirements of both mother and embryo during pregnancy.

Do you have any advice for scientists starting out in your field?
Don’t be afraid to ask the hard questions and think outside the box.

Related Products

Laboratory Animals

Mouse
Loading
Rat
Loading
Non-Human Primate
Loading

 

Companion Animals

Canine
Loading
Feline
Loading

 

Agricultural Animals

Bovine
Loading
Equine
Loading
Porcine
Loading
Ovine
Loading
Chicken
Loading

 

Multi-Species

Loading

If you cannot find the assay you are looking for, we also offer custom assay services to help you multiplex it your way and develop the right assay for your research.

For Research Use Only. Not For Use In Diagnostic Procedures.

Highlighted Publications

See how MILLIPLEX® multiplex assays are being used in veterinary medicine and animal health research. Also, discover how these kits can be used for animal research models, such as mouse models, in this evaluation of a high-sensitivity mouse cytokine panel.

Laboratory Animals

Mouse

1.
Queenan AM, Dowling DJ, Cheng WK, Faé K, Fernandez J, Flynn PJ, Joshi S, Brightman SE, Ramirez J, Serroyen J, et al. 2019. Increasing FIM2/3 antigen-content improves efficacy of Bordetella pertussis vaccines in mice in vivo without altering vaccine-induced human reactogenicity biomarkers in vitro. Vaccine. 37(1):80-89. https://doi.org/10.1016/j.vaccine.2018.11.028

Rat

1.
Stokes JV, Walker DH, Varela-Stokes AS. 2020. The guinea pig model for tick-borne spotted fever rickettsioses: A second look. Ticks and Tick-borne Diseases. 11(6):101538. https://doi.org/10.1016/j.ttbdis.2020.101538

Non-Human Primate

1.
Jiao L, Yang Y, Yu W, Zhao Y, Long H, Gao J, Ding K, Ma C, Li J, Zhao S, et al. 2021. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Sig Transduct Target Ther. 6(1): https://doi.org/10.1038/s41392-021-00591-7
2.
Ishigaki H, Nakayama M, Kitagawa Y, Nguyen CT, Hayashi K, Shiohara M, Gotoh B, Itoh Y. 2021. Neutralizing antibody-dependent and -independent immune responses against SARS-CoV-2 in cynomolgus macaques. Virology. 55497-105. https://doi.org/10.1016/j.virol.2020.12.013
3.
Jiao L, Li H, Xu J, Yang M, Ma C, Li J, Zhao S, Wang H, Yang Y, Yu W, et al. 2021. The Gastrointestinal Tract Is an Alternative Route for SARS-CoV-2 Infection in a Nonhuman Primate Model. Gastroenterology. 160(5):1647-1661. https://doi.org/10.1053/j.gastro.2020.12.001
4.
Cole LE, Zhang J, Pacheco KM, Lhéritier P, Anosova NG, Piolat J, Zheng L, Reveneau N. Immunological Distinctions between Acellular and Whole-Cell Pertussis Immunizations of Baboons Persist for at Least One Year after Acellular Vaccine Boosting. Vaccines. 8(4):729. https://doi.org/10.3390/vaccines8040729
5.
Marzi A, Reynolds P, Mercado-Hernandez R, Callison J, Feldmann F, Rosenke R, Thomas T, Scott DP, Hanley PW, Haddock E, et al. 2019. Single low-dose VSV-EBOV vaccination protects cynomolgus macaques from lethal Ebola challenge. EBioMedicine. 49223-231. https://doi.org/10.1016/j.ebiom.2019.09.055
6.
Fovet C, Stimmer L, Contreras V, Horellou P, Hubert A, Seddiki N, Chapon C, Tricot S, Leroy C, Flament J, et al. 2019. Intradermal vaccination prevents anti-MOG autoimmune encephalomyelitis in macaques. EBioMedicine. 47492-505. https://doi.org/10.1016/j.ebiom.2019.08.052
7.
Ezzelarab MB, Perez-Gutierrez A, Humar A, Wijkstrom M, Zahorchak AF, Lu-Casto L, Wang Y, Wiseman RW, Minervini M, Thomson AW. 2019. Preliminary assessment of the feasibility of autologous myeloid-derived suppressor cell infusion in non-human primate kidney transplantation. Transplant Immunology. 56101225. https://doi.org/10.1016/j.trim.2019.101225
8.
Mooij P, Grødeland G, Koopman G, Andersen TK, Mortier D, Nieuwenhuis IG, Verschoor EJ, Fagrouch Z, Bogers WM, Bogen B. 2019. Needle-free delivery of DNA: Targeting of hemagglutinin to MHC class II molecules protects rhesus macaques against H1N1 influenza. Vaccine. 37(6):817-826. https://doi.org/10.1016/j.vaccine.2018.12.049
9.
Latimer CS, Shively CA, Keene CD, Jorgensen MJ, Andrews RN, Register TC, Montine TJ, Wilson AM, Neth BJ, Mintz A, et al. 2019. A nonhuman primate model of early Alzheimer's disease pathologic change: Implications for disease pathogenesis. Alzheimer's & Dementia. 15(1):93-105. https://doi.org/10.1016/j.jalz.2018.06.3057

Canine

1.
Harjen HJ, Nicolaysen TV, Negard T, Lund H, Sævik BK, Anfinsen KP, Moldal ER, Zimmer KE, Rørtveit R. 2021. Serial serum creatinine, SDMA and urinary acute kidney injury biomarker measurements in dogs envenomated by the European adder (Vipera berus). BMC Vet Res. 17(1): https://doi.org/10.1186/s12917-021-02851-8
2.
Solcà MdS, Arruda MR, Leite BMM, Mota TF, Rebouças MF, de Jesus MS, Amorim LDAF, Borges VM, Valenzuela J, Kamhawi S, et al. Immune response dynamics and Lutzomyia longipalpis exposure characterize a biosignature of visceral leishmaniasis susceptibility in a canine cohort. PLoS Negl Trop Dis. 15(2):e0009137. https://doi.org/10.1371/journal.pntd.0009137
3.
Davis J, Rossi G, Miller DW, Cianciolo RE, Raisis AL. 2021. Ability of different assay platforms to measure renal biomarker concentrations during ischaemia-reperfusion acute kidney injury in dogs. Research in Veterinary Science. 135547-554. https://doi.org/10.1016/j.rvsc.2020.11.005
4.
Allison L, Jaffey J, Bradley-Siemens N, Tao Z, Thompson M, Backus R. 2020. Immune function and serum vitamin D in shelter dogs: A case-control study. The Veterinary Journal. 261105477. https://doi.org/10.1016/j.tvjl.2020.105477
5.
Kaid C, Madi RAdS, Astray R, Goulart E, Caires-Junior LC, Mitsugi TG, Moreno ACR, Castro-Amarante MF, Pereira LR, Porchia BFMM, et al. 2020. Safety, Tumor Reduction, and Clinical Impact of Zika Virus Injection in Dogs with Advanced-Stage Brain Tumors. Molecular Therapy. 28(5):1276-1286. https://doi.org/10.1016/j.ymthe.2020.03.004
6.
Martinez P, Pucheu C, Liu C, Carter R. 2020. Cytokine tear film profile determination in eyes of healthy dogs and those with inflammatory periocular and skin disorders. Veterinary Immunology and Immunopathology. 221110012. https://doi.org/10.1016/j.vetimm.2020.110012
7.
Dias JN, Lopes M, Peleteiro C, Vicente G, Nunes T, Mateus L, Aires-da-Silva F, Tavares L, Gil S. 2019. Canine multicentric lymphoma exhibits systemic and intratumoral cytokine dysregulation. Veterinary Immunology and Immunopathology. 218109940. https://doi.org/10.1016/j.vetimm.2019.109940
8.
Hutchison S, Sahay B, de Mello SC, Sayour E, Lejeune A, Szivek A, Livaccari A, Fox-Alvarez S, Salute M, Powers L, et al. 2019. Characterization of myeloid-derived suppressor cells and cytokines GM-CSF, IL-10 and MCP-1 in dogs with malignant melanoma receiving a GD3-based immunotherapy. Veterinary Immunology and Immunopathology. 216109912. https://doi.org/10.1016/j.vetimm.2019.109912

Feline

1.
O'Halloran C, McCulloch L, Rentoul L, Alexander J, Hope JC, Gunn-Moore DA. 2018. Cytokine and Chemokine Concentrations as Biomarkers of Feline Mycobacteriosis. Sci Rep. 8(1): https://doi.org/10.1038/s41598-018-35571-5
2.
Lee Y, Maes R, Tai SS, Soboll Hussey G. 2019. Viral replication and innate immunity of feline herpesvirus-1 virulence-associated genes in feline respiratory epithelial cells. Virus Research. 26456-67. https://doi.org/10.1016/j.virusres.2019.02.013
3.
Kopanke JH, Horak KE, Musselman E, Miller CA, Bennett K, Olver CS, Volker SF, VandeWoude S, Bevins SN. 2018. Effects of Low-level Brodifacoum Exposure on the Feline Immune Response. Sci Rep. 8(1): https://doi.org/10.1038/s41598-018-26558-3

Bovine

1.
Smith K, Kleynhans L, Snyders C, Bernitz N, Cooper D, van Helden P, Warren RM, Miller MA, Goosen WJ. 2021. Use of the MILLIPLEX® bovine cytokine/chemokine multiplex assay to identify Mycobacterium bovis-infection biomarkers in African buffaloes (Syncerus caffer). Veterinary Immunology and Immunopathology. 231110152. https://doi.org/10.1016/j.vetimm.2020.110152

Equine

1.
Segabinazzi LGTM, Canisso IF, Podico G, Cunha LL, Novello G, Rosser MF, Loux SC, Lima FS, Alvarenga MA. Intrauterine Blood Plasma Platelet-Therapy Mitigates Persistent Breeding-Induced Endometritis, Reduces Uterine Infections, and Improves Embryo Recovery in Mares. Antibiotics. 10(5):490. https://doi.org/10.3390/antibiotics10050490
2.
Pavulraj S, Kamel M, Stephanowitz H, Liu F, Plendl J, Osterrieder N, Azab W. Equine Herpesvirus Type 1 Modulates Cytokine and Chemokine Profiles of Mononuclear Cells for Efficient Dissemination to Target Organs. Viruses. 12(9):999. https://doi.org/10.3390/v12090999
3.
Zak A, Siwinska N, Elzinga S, Barker V, Stefaniak T, Schanbacher B, Place N, Niedzwiedz A, Adams A. 2020. Effects of advanced age and pituitary pars intermedia dysfunction on components of the acute phase reaction in horses. Domestic Animal Endocrinology. 72106476. https://doi.org/10.1016/j.domaniend.2020.106476
4.
Zak A, Siwinska N, Elzinga S, Barker V, Stefaniak T, Schanbacher B, Place N, Niedzwiedz A, Adams A. 2020. Effects of equine metabolic syndrome on inflammation and acute-phase markers in horses. Domestic Animal Endocrinology. 72106448. https://doi.org/10.1016/j.domaniend.2020.106448

Porcine

1.
Fernandez J, Sanders H, Henn J, Wilson JM, Malone D, Buoninfante A, Willms M, Chan R, DuMont AL, McLahan C, et al. Vaccination With Detoxified Leukocidin AB Reduces Bacterial Load in a Staphylococcus aureus Minipig Deep Surgical Wound Infection Model. https://doi.org/10.1093/infdis/jiab219
2.
Naujokat H, Sengebusch A, Loger K, Möller B, Açil Y, Wiltfang J. 2021. Therapy of antigen-induced arthritis of the temporomandibular joint via platelet-rich plasma injections in domestic pigs. Journal of Cranio-Maxillofacial Surgery. 49(8):726-731. https://doi.org/10.1016/j.jcms.2021.02.022
3.
Wen X, Wu W, Fang W, Tang S, Xin H, Xie J, Zhang H. 2019. Effects of long-term heat exposure on cholesterol metabolism and immune responses in growing pigs. Livestock Science. 230103857. https://doi.org/10.1016/j.livsci.2019.103857
4.
Lee A, You L, Oh S, Li Z, Fisher-Heffernan R, Regnault T, de Lange C, Huber L, Karrow N. 2019. Microalgae supplementation to late gestation sows and its effects on the health status of weaned piglets fed diets containing high- or low-quality protein sources. Veterinary Immunology and Immunopathology. 218109937. https://doi.org/10.1016/j.vetimm.2019.109937
5.
Borges AM, Ferrari RS, Thomaz LDGR, Ulbrich JM, Félix EA, Silvello D, Andrade CF. 2019. Challenges and perspectives in porcine model of acute lung injury using oleic acid. Pulmonary Pharmacology & Therapeutics. 59101837. https://doi.org/10.1016/j.pupt.2019.101837

Ovine

1.
Fusco A, Hohl K, Even K, Joenathan A, Grinstaff M, Schaer T, Snyder B. 2021. Valgus malalignment induces osteoarthritis in the ovine stifle joint. Osteoarthritis and Cartilage. 29S170-S171. https://doi.org/10.1016/j.joca.2021.02.237
2.
Naylor D, Sharma A, Li Z, Monteith G, Sullivan T, Canovas A, Mallard B, Baes C, Karrow N. 2020. Short communication: Characterizing ovine serum stress biomarkers during endotoxemia. Journal of Dairy Science. 103(6):5501-5508. https://doi.org/10.3168/jds.2019-17718

For Research Use Only. Not For Use In Diagnostic Procedures.

Sign In To Continue

To continue reading please sign in or create an account.

Don't Have An Account?