Skip to Content
Merck
All Photos(1)

Documents

901686

Sigma-Aldrich

Fluoroethylene carbonate

battery grade, ≥99%, acid <200 ppm, anhydrous

Synonym(s):

4-Fluoro-1,3-dioxolan-2-one, FEC

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C3H3FO3
CAS Number:
Molecular Weight:
106.05
MDL number:
UNSPSC Code:
26111700
NACRES:
NA.23

grade

anhydrous
battery grade

Assay

≥99%

form

liquid

impurities

≤100 ppm H2O
≤200 ppm acid

bp

212 °C

mp

18-23 °C

density

1.485 g/cm3

application(s)

battery manufacturing

SMILES string

FC1COC(=O)O1

InChI

1S/C3H3FO3/c4-2-1-6-3(5)7-2/h2H,1H2

InChI key

SBLRHMKNNHXPHG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Anhydrous fluoroethylene carbonate (FEC) is a synthetic, organic compound that belongs to the class of compounds known as carbonates. It is a clear, colorless liquid that is highly stable and resistant to hydrolysis, making it an ideal choice for use in a variety of chemical reactions and processes. Fluoroethylene carbonate is typically produced by the reaction of fluoroacetic acid and carbon dioxide.

Application

Anhydrous battery-grade fluoroethylene carbonate (FEC) is an essential ingredient in high-quality lithium-ion battery electrolytes. Its unique properties, such as its ability to form a stable SEI layer on the anode, help improve the safety, reliability, and performance of lithium-ion batteries. In particular, the addition of battery-grade FEC to the electrolyte can significantly enhance the rate capability, capacity retention, and low-temperature performance of lithium-ion batteries. Battery-grade FEC is compatible with a range of materials used in lithium-ion batteries, including lithium metal, graphite, silicon, and metal oxide cathodes, making it a versatile electrolyte additive. As the demand for high-performance lithium-ion batteries continues to grow in various applications, including electric vehicles and portable electronics, the use of battery-grade FEC as an electrolyte additive is becoming increasingly important in the development of advanced battery technologies.

Features and Benefits

Fluoroethylene carbonate can enhance battery safety and improve performance. Adding battery-grade FEC to the electrolyte can significantly enhance cycle life, capacity retention, and low temperature performance compared to batteries without FEC.
✔ Improves Battery Safety
✔ Enhances Battery Performance
✔ Versatile Electrode Compatibility

Caution

  • These electrolyte solutions have extremely low water content; please handle under inert and moisture free environment (glove box).
  • Keep containers tightly closed. Keep away from heat and ignition sources. Store in a cool and dry place. Avoid storing together with oxidizers.

Legal Information

Product of MU Ionic Solutions Corporation

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes.
Schroder K, et al.
Chemistry of Materials, 27, 5531-5542 (2015)
Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries.
Markevich E, et al.
ACS Energy Letters, 2, 1337-1345 (2017)

Related Content

Batteries, fuel cells, and supercapacitors rely on electrochemical energy production. Understand their operation and electron/ion transport separation.

Batteries, fuel cells, and supercapacitors rely on electrochemical energy production. Understand their operation and electron/ion transport separation.

Batteries, fuel cells, and supercapacitors rely on electrochemical energy production. Understand their operation and electron/ion transport separation.

Batteries, fuel cells, and supercapacitors rely on electrochemical energy production. Understand their operation and electron/ion transport separation.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service