Saltar al contenido
MilliporeSigma

Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica.

Biotechnology letters (2010-11-04)
Guan-Chun Chen, I-Ching Kuan, Jian-Ren Hong, Bing-Hong Tsai, Shiow-Ling Lee, Chi-Yang Yu
RESUMEN

Triacylglycerol lipase from Pseudomonas cepacia and Fe(3)O(4) magnetic nanoparticles were encapsulated simultaneously within biomimetic silica through the catalysis of polyallylamine. The encapsulation efficiency reached 96% with an activity recovery of 51%. After 5 h at 37°C, the activities of the free and encapsulated lipases decreased by 77 and 16%, respectively. Addition of 10 and 15 mol% trimethylmethoxysilane to tetramethoxysilane during encapsulation doubled the lipase activity while inclusion of 50 and 60 mol% γ-(methacryloxypropyl)-trimethoxysilane tripled the activity. Thus, such encapsulation not only stabilized P. cepacia lipase but also could enhance the activity by varying silane additives.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Lipase from Aspergillus niger, powder (fine), ~200 U/g
Sigma-Aldrich
Lipase from Aspergillus oryzae, lyophilized, powder, white, ~50 U/mg
Sigma-Aldrich
Lipase from Candida rugosa, lyophilized, powder (fine), 15-25 U/mg
Sigma-Aldrich
Lipase, immobilized on Immobead 150 from Pseudomonas cepacia, ≥900 U/g