Saltar al contenido
MilliporeSigma

Learning induces neurotrophin signaling at hippocampal synapses.

Proceedings of the National Academy of Sciences of the United States of America (2010-04-02)
Lulu Y Chen, Christopher S Rex, Yas Sanaiha, Gary Lynch, Christine M Gall
RESUMEN

Learning-induced trophic activity is thought to be critical for maintaining health of the aging brain. We report here that learning, acting through an unexpected pathway, activates synaptic receptors for one of the brain's primary trophic factors. Unsupervised learning, but not exploratory activity alone, robustly increased the number of postsynaptic densities associated with activated (phosphorylated) forms of BDNF's TrkB receptor in adult rat hippocampus; these increases were blocked by an NMDA receptor antagonist. Similarly, stimulation of hippocampal slices at the learning-related theta frequency increased synaptic TrkB phosphorylation in an NMDA receptor-dependent fashion. Theta burst stimulation, which was more effective in this regard than other stimulation patterns, preferentially engaged NMDA receptors that, in turn, activated Src kinases. Blocking the latter, or scavenging extracellular TrkB ligands, prevented theta-induced TrkB phosphorylation. Thus, synaptic TrkB activation was dependent upon both ligand presentation and postsynaptic signaling cascades. These results show that afferent activity patterns and cellular events involved in memory encoding initiate BDNF signaling through synaptic TrkB, thereby ensuring that learning will trigger neurotrophic support.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-TrkA Antibody, Upstate®, from rabbit
Sigma-Aldrich
TrkB/Fc Chimera human, >90% (SDS-PAGE), recombinant, expressed in NSO cells, lyophilized powder