Saltar al contenido
MilliporeSigma

Impact of cathepsin B on the interstitial fluid proteome of murine breast cancers.

Biochimie (2015-10-13)
Alejandro Gomez-Auli, Larissa Elisabeth Hillebrand, Martin Lothar Biniossek, Christoph Peters, Thomas Reinheckel, Oliver Schilling
RESUMEN

Carcinomas establish a molecular cross talk between malignant tumor cells and the activated non-malignant cells of the tumor stroma. This cell-cell communication in tumor-stroma interaction includes soluble, secreted proteins that act in a paracrine or autocrine manner. Proteases are crucial factors in tumor-stroma interaction by degrading or truncating secreted bioactive proteins. The cysteine protease cathepsin B is frequently overexpressed in several cancer types, including breast cancer. Its abundance often correlates with poor prognosis. In the murine polyoma virus middle T oncogene (PyMT) breast cancer model, cathepsin B is equally pro-tumorigenic. In this study, we investigate how cathepsin B shapes the secreted proteome of PyMT breast cancers. We employed a novel strategy to harvest tumor interstitial fluid (IF) in combination with chemical stable isotope tagging for quantitative proteomic comparison of IF stemming from PyMT tumors from wild-type mice, mice lacking cathepsin B, and mice over-expressing human cathepsin B. In three biological replicates, we achieve good proteome coverage (∼1700 proteins), with a large content (>70%) of secreted proteins. This characterizes IF as a robust source for the investigation of cancer secretomes. We also identified a large number of shed ectodomains, thus highlighting the importance of tumor-contextual cell surface proteolysis. Furthermore, IF contained >190 proteases and protease inhibitors, which span the entire range of absolute protein abundances; an observation testifying for an important role of proteolysis in tumor-stroma interaction. The cathepsin B genotype consistently affected proteins including alpha-1B-glycoprotein and major urinary proteins 11 and 8 (MUP8). Our study establishes tumor IF as a rich source for the investigation of secreted proteins in tumor biology and sheds light on complex proteolytic networks in the breast cancer secretome.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Sodium cyanoborodeuteride, 97 atom % D, ≥96% (CP)