Saltar al contenido
MilliporeSigma
  • Impact of molecular weight and degree of conjugation on the thermodynamics of DNA complexation and stability of polyethylenimine-graft-poly(ethylene glycol) copolymers.

Impact of molecular weight and degree of conjugation on the thermodynamics of DNA complexation and stability of polyethylenimine-graft-poly(ethylene glycol) copolymers.

Biophysical chemistry (2015-05-23)
Ryan J Smith, Rachel W Beck, Lisa E Prevette
RESUMEN

Poly(ethylene glycol) (PEG) is often conjugated to polyethylenimine (PEI) to provide colloidal stability to PEI-DNA polyplexes and shield charge leading to toxicity. Here, a library of nine cationic copolymers was synthesized by grafting three molecular weights (750, 2000, 5000Da) of PEG to linear PEI at three conjugation ratios. Using isothermal titration calorimetry, we have quantified the thermodynamics of the associations between the copolymers and DNA and determined the extent to which binding is hindered as a function of PEG molecular weight and conjugation ratio. Low conjugation ratios of 750Da PEG to PEI resulted in little decrease in DNA affinity, but a significant decrease-up to two orders of magnitude-was found for the other copolymers. We identified limitations in determination of affinity using indirect assays (electrophoretic mobility shift and ethidium bromide exclusion) commonly used in the field. Dynamic light scattering of the DNA complexes at physiological ionic strength showed that PEI modifications that did not reduce DNA affinity also did not confer significant colloidal stability, a finding that was supported by calorimetric data on the aggregation process. These results quantify the DNA interaction thermodynamics of PEGylated polycations for the first time and indicate that there is an optimum PEG chain length and degree of substitution in the design of agents that have desirable properties for effective in vivo gene delivery.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Óxido de deuterio, 99.9 atom % D
Sigma-Aldrich
Base Trizma®, Primary Standard and Buffer, ≥99.9% (titration), crystalline
Sigma-Aldrich
Base Trizma®, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
Óxido de deuterio, 99.9 atom % D, contains 0.05 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Sigma 7-9®, ≥99% (titration), crystalline
Sigma-Aldrich
Tromethamine, meets USP testing specifications
Sigma-Aldrich
Base Trizma®, BioUltra, for molecular biology, ≥99.8% (T)
Sigma-Aldrich
Base Trizma®, ≥99.0% (T)
Sigma-Aldrich
Base Trizma®, BioXtra, pH 10.5-12.0 (1 M in H2O), ≥99.9% (titration)
Sigma-Aldrich
Base Trizma®, ≥99.9% (titration), crystalline
Sigma-Aldrich
Óxido de deuterio, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Tris(hidroximetil)-aminometano, ACS reagent, ≥99.8%
Sigma-Aldrich
Tris(hidroximetil)-aminometano, JIS special grade, ≥99.0%
Sigma-Aldrich
Óxido de deuterio, filtered, 99.8 atom % D
Sigma-Aldrich
Ethanesulfonic acid, 95%
Sigma-Aldrich
Óxido de deuterio, 99.9 atom % D, contains 1 % (w/w) 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS)
Sigma-Aldrich
Base Trizma®, anhydrous, free-flowing, Redi-Dri, ≥99.9%
SAFC
Tromethamine
Sigma-Aldrich
Base Trizma®, puriss. p.a., ≥99.7% (T)
Sigma-Aldrich
MOPSO, ≥99% (titration)
Sigma-Aldrich
Óxido de deuterio, 70 atom % D
Sigma-Aldrich
Tris(hidroximetil)-aminometano, ≥99.8%
Sigma-Aldrich
Óxido de deuterio, 60 atom % D
Sigma-Aldrich
Tris(hidroximetil)-aminometano, ≥99.8%