Saltar al contenido
MilliporeSigma
  • Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards.

Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards.

Journal of chromatography. A (2015-04-22)
Takashi Yarita, Yoshie Aoyagi, Takamitsu Otake
RESUMEN

The impact of the matrix effect in GC-MS quantification of pesticides in food using the corresponding isotope-labeled internal standards was evaluated. A spike-and-recovery study of nine target pesticides was first conducted using paste samples of corn, green soybean, carrot, and pumpkin. The observed analytical values using isotope-labeled internal standards were more accurate for most target pesticides than that obtained using the external calibration method, but were still biased from the spiked concentrations when a matrix-free calibration solution was used for calibration. The respective calibration curves for each target pesticide were also prepared using matrix-free calibration solutions and matrix-matched calibration solutions with blank soybean extract. The intensity ratio of the peaks of most target pesticides to that of the corresponding isotope-labeled internal standards was influenced by the presence of the matrix in the calibration solution; therefore, the observed slope varied. The ratio was also influenced by the type of injection method (splitless or on-column). These results indicated that matrix-matching of the calibration solution is required for very accurate quantification, even if isotope-labeled internal standards were used for calibration.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Tolueno, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Fosfato de potasio monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Cloruro de sodio, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Fosfato de potasio monobasic, for molecular biology, ≥98.0%
Sigma-Aldrich
Fosfato de potasio monobasic, ReagentPlus®
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Cloruro de sodio, JIS special grade, ≥99.5%
Sigma-Aldrich
Cloruro de sodio, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Fosfato de potasio dibasic, anhydrous, for luminescence, for molecular biology, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Cloruro de sodio, 99.999% trace metals basis
Sigma-Aldrich
Fosfato de potasio dibasic, reagent grade, ≥98.0%
Sigma-Aldrich
Acetona, JIS special grade, ≥99.5%
Sigma-Aldrich
Potassium phosphate dibasic solution, 1.0 M
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Cloruro de sodio, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Cloruro de sodio, SAJ first grade, ≥99.0%