Saltar al contenido
MilliporeSigma

Dystrophin proteolysis: a potential target for MMP-2 and its prevention by ischemic preconditioning.

American journal of physiology. Heart and circulatory physiology (2014-05-06)
Bruno Buchholz, Virginia Perez, Nadezda Siachoque, Verónica Miksztowicz, Gabriela Berg, Manuel Rodríguez, Martín Donato, Ricardo J Gelpi
RESUMEN

Dystrophin is responsible for the mechanical stabilization of the sarcolemma, and it has been shown that it is one of the most sensitive proteins to ischemic injury. However, the enzyme responsible for this proteolysis is still unknown. Isolated rabbit hearts were subjected to 30 min of global ischemia with and without reperfusion (180 min) to determine whether dystrophin is cleaved by matrix metalloproteinase (MMP)-2 during acute ischemia and whether ischemic preconditioning (PC) prevents dystrophin breakdown through MMP-2 inhibition. The activity of MMP-2 was evaluated by zymography and using doxycycline as an inhibitor. Also, to stimulate MMP-2 activity without ischemia, SIN-1 was administered in the absence and presence of doxycycline. Finally, we considered the PC effect on MMP-2 activity and dystrophin expression. The dystrophin level decreased during ischemia, reaching 21% of control values (P < 0.05), but the spectrin level remained unchanged. MMP-2 activity increased 71% during ischemia compared with control values (P < 0.05). Doxycycline administration before ischemia prevented dystrophin breakdown. In normoxic hearts, SIN-1 increased thiobarbituric acid-reactive substances by 33% (P < 0.05) and MMP-2 activity by 36% (P < 0.05) and significantly reduced the dystrophin level to 23% of control values (P < 0.05). PC significantly prevented dystrophin breakdown by inhibiting MMP-2 activity, and the dystrophin level reached 89% of control values (P < 0.05). In conclusion, MMP-2 could be responsible for the proteolysis of dystrophin. Thus, dystrophin emerges as a possible novel substrate for MMP-2 in the context of ischemic injury. Furthermore, our results demonstrate that ischemic PC prevents dystrophin breakdown most likely by inhibiting MMP-2 activity.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Fosfato de potasio monobasic, ACS reagent, ≥99.0%
Sigma-Aldrich
Fosfato de potasio monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Fosfato de potasio monobasic, buffer substance, anhydrous, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 99.5-100.5%
Sigma-Aldrich
Fosfato de potasio monobasic, for molecular biology, ≥98.0%
Sigma-Aldrich
Fosfato de potasio monobasic, ReagentPlus®
Sigma-Aldrich
Fosfato de potasio monobasic, meets analytical specification of Ph. Eur., NF, E340, anhydrous, 98-100.5% (calc. to the dried substance)
Sigma-Aldrich
Fosfato de potasio monobasic, 99.99% trace metals basis
Sigma-Aldrich
Fosfato de potasio monobasic, BioUltra, for molecular biology, anhydrous, ≥99.5% (T)
Supelco
Fosfato de potasio monobasic, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Fosfato de potasio monobasic, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Brilliant Blue R, Dye content ~50 %, Technical grade
USP
Fosfato de potasio monobasic, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Fosfato de potasio monobasic, ≥99.5%