Saltar al contenido
MilliporeSigma
  • Expression of recombinant human pregnancy-associated plasma protein-A and identification of the proform of eosinophil major basic protein as its physiological inhibitor.

Expression of recombinant human pregnancy-associated plasma protein-A and identification of the proform of eosinophil major basic protein as its physiological inhibitor.

The Journal of biological chemistry (2000-07-27)
M T Overgaard, J Haaning, H B Boldt, I M Olsen, L S Laursen, M Christiansen, G J Gleich, L Sottrup-Jensen, C A Conover, C Oxvig
RESUMEN

Pregnancy-associated plasma protein-A (PAPP-A), originally known from human pregnancy serum, has recently been demonstrated to be a metzincin superfamily metalloproteinase involved in normal and pathological insulin-like growth factor (IGF) physiology. PAPP-A specifically cleaves IGF-binding protein (IGFBP)-4, one of six antagonists of IGF action, which results in release of IGF bound to IGFBP-4. IGFBP-4 is the only known PAPP-A substrate. Its cleavage by PAPP-A uniquely depends on the presence of IGF. We here report mammalian expression and purification of recombinant 1547-residue PAPP-A (rPAPP-A). The recombinant protein is secreted as a homodimer of about 400 kDa composed of two 200-kDa disulfide-bound subunits. Antigenically and functionally, rPAPP-A behaves like the native protein. In human pregnancy, PAPP-A is known to circulate as a 500-kDa disulfide-bound 2:2 complex with the proform of eosinophil major basic protein (proMBP), PAPP-A/proMBP. A comparison between rPAPP-A and pregnancy serum PAPP-A/proMBP complex surprisingly reveals a difference greater than 100-fold in proteolytic activity, showing that proMBP functions as a proteinase inhibitor in vivo. We find that polyclonal antibodies against PAPP-A abrogate all detectable IGFBP-4 proteolytic activity in pregnancy serum, pointing at PAPP-A as the dominating, if not the only, IGFBP-4 proteinase present in the circulation. We further show that pregnancy serum and plasma contain traces (<1%) of uncomplexed PAPP-A with a much higher specific activity than the PAPP-A/proMBP complex. The measurable activity of the PAPP-A/proMBP complex probably results from the presence of a minor subpopulation of partly inhibited PAPP-A that exists in a 2:1 complex with proMBP. Inhibition of PAPP-A by proMBP represents a novel inhibitory mechanism with the enzyme irreversibly bound to its inhibitor by disulfide bonds.