Saltar al contenido
MilliporeSigma

Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance.

Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases (2013-09-17)
C Wongsrichanalai, C H Sibley
RESUMEN

Following a decade-long scale up of malaria control through vector control interventions, the introduction of rapid diagnostic tests and highly efficacious Artemisinin-based Combination Therapy (ACT) along with other measures, global malaria incidence declined significantly. The recent development of artemisinin resistance on the Cambodia-Thailand border, however, is of great concern. This review encompasses the background of artemisinin resistance in Plasmodium falciparum, its situation, especially in the Greater Mekong Sub-region (GMS), and the responses taken to overcome this resistance. The difficulties in defining resistance are presented, particularly the necessity of measuring the clinical response to artemisinins using the slow parasite-clearance phenotype. Efforts to understand the molecular basis of artemisinin resistance and the search for molecular markers are reviewed. The markers, once identified, can be applied as an efficient tool for resistance surveillance. Despite the limitation of current surveillance methods, it is important to continue vigilance for artemisinin resistance. The therapeutic efficacy "in vivo study" network for monitoring antimalarial resistance in the GMS has been strengthened. GMS countries are working together in response to artemisinin resistance and aim to eliminate all P. falciparum parasites. These efforts are crucial since a resurgence of malaria due to drug and/or insecticide resistance, program cuts, lack of political support and donor fatigue could set back malaria control success in the sub-region and threaten malaria control and elimination if resistance spreads to other regions.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Artemisinin, 98%