Saltar al contenido
MilliporeSigma
  • Two- and three-dimensional lanthanide-organic frameworks constructed using 1-hydro-6-oxopyridine-3-carboxylate and oxalate ligands.

Two- and three-dimensional lanthanide-organic frameworks constructed using 1-hydro-6-oxopyridine-3-carboxylate and oxalate ligands.

Dalton transactions (Cambridge, England : 2003) (2010-05-08)
Cai-Ming Liu, Ming Xiong, De-Qing Zhang, Miao Du, Dao-Ben Zhu
RESUMEN

6-Hydroxypyridine-3-carboxylic acid (6-HOPy-3-CO(2)H) reacts with Ln(2)O(3) (Ln = Nd, Sm, Eu, Gd) and oxalic acid (H(2)OX) under hydrothermal conditions to generate four novel lanthanide-organic coordination polymeric networks [Ln(2)(1H-6-Opy-3-CO(2))(2)(OX)(2)(H(2)O)(3)] x 2.5 H(2)O (Ln = Nd, 1; Sm, 2; 1H-6-Opy-3-CO(2)(-) = 1-hydro-6-oxopyridine-3-carboxylate) and [Ln(1H-6-Opy-3-CO(2))(OX)(H(2)O)(2)] x H(2)O (Ln = Eu, 3; Gd, 4). The new co-ligand 1H-6-Opy-3-CO(2)(-) anion was generated by the autoisomerization of the single deprotonated 6-HOPy-3-CO(2)(-) anion (from the enol form into the ketone one). 1 and 2 are isomorphous, they possess a three-dimensional architecture constructed from Ln(3+) ions bridged by oxalate anions and two types of 1H-6-Opy-3-CO(2)(-) bridges, showing a three-nodal (4,5)-connected topology (3.4(2).5(2).6(3).7.8)(2)(3.5(3).6(2))(2)(3(2).6.7(2).8) or a simplified uninodal 6-connected topology (3(3).4(6).5(5).6), both topologies are completely new; while only one type of 1H-6-Opy-3-CO(2)(-) bridge is used to construct the two-dimensional layer networks of 3 and 4 besides oxalate bridges, both complexes 3 and 4 are isostructural, exhibiting the honeycomb topology 6(3). The lanthanide contraction effect is believed to play a key role in directing the formation of a particular structure. A magnetic study of 1-3 indicated that the coupling interaction between Ln(3+) ions is weak.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
6-Hydroxypyridine-3-carboxylic acid, 98%