Saltar al contenido
MilliporeSigma

Highly selective fluorescent sensing of fenitrothion using per-6-amino-β-cyclodextrin:Eu(III) complex.

Biosensors & bioelectronics (2012-03-20)
Kuppusamy Kanagaraj, Abdullah Affrose, Subbaiah Sivakolunthu, Kasi Pitchumani
RESUMEN

A unique, efficient, highly sensitive and selective fluorescent chemosensor for fenitrothion has been reported for the first time using per-6-amino-β-cyclodextrin:Eu(III) complex. Among the various pesticides, the sensitivity response is found to be in the order, fenitrothion>quinalphos>methylparathion>parathion>methylparaoxon>paraoxon>fenchlorphos>profenofos>malathion. A detection limit as low as 1 × 10(-12)M for fenitrothion sensing is realized with a 2.4% relative standard deviation (RSD) of three consecutive runs. The per-6-amino-β-cyclodextrin:Eu(III):pesticide complexes and their sensing mechanism are evidenced from emission, NMR, FT-IR, binding constant measurement, Job's plot, ICD spectra, ESI-MS, lifetime measurements and molecular modeling studies. The proposed sensing is a consequence of Absorption Energy Transfer Emission (AETE) process as a result of better encapsulation of fenitrothion inside the cavity of per-6-amino-β-cyclodextrin:Eu(III) complex. The remarkable sensitivity and selectivity of fenitrothion compared to other OPs, is attributed to a more deeper binding and tighter fit of fenitrothion inside the CD cavity, which is evident from binding constant values and molecular modeling studies. This tighter fit ensures the replacement of two coordinating water molecules on Eu(III) ion, which may have contributed to the more selective sensing of fenitrothion.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Supelco
Fenitrothion, PESTANAL®, analytical standard