Saltar al contenido
MilliporeSigma

Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2013-03-08)
Victor Briz, Yu-Tien Hsu, Yi Li, Erin Lee, Xiaoning Bi, Michel Baudry
RESUMEN

Memory consolidation has been suggested to be protein synthesis dependent. Previous data indicate that BDNF-induced dendritic protein synthesis is a key event in memory formation through activation of the mammalian target of rapamycin (mTOR) pathway. BDNF also activates calpain, a calcium-dependent cysteine protease, which has been shown to play a critical role in learning and memory. This study was therefore directed at testing the hypothesis that calpain activity is required for BDNF-stimulated local protein synthesis, and at identifying the underlying molecular mechanism. In rat hippocampal slices, cortical synaptoneurosomes, and cultured neurons, BDNF-induced mTOR pathway activation and protein translation were blocked by calpain inhibition. BDNF treatment rapidly reduced levels of hamartin and tuberin, negative regulators of mTOR, in a calpain-dependent manner. Treatment of brain homogenates with purified calpain-1 and calpain-2 truncated both proteins. BDNF treatment increased phosphorylation of both Akt and ERK, but only the effect on Akt was blocked by calpain inhibition. Levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that inactivates Akt, were decreased following BDNF treatment, and calpain inhibition reversed this effect. Calpain-2, but not calpain-1, treatment of brain homogenates resulted in PTEN degradation. In cultured cortical neurons, knockdown of calpain-2, but not calpain-1, by small interfering RNA completely suppressed the effect of BDNF on mTOR activation. Our results reveal a critical role for calpain-2 in BDNF-induced mTOR signaling and dendritic protein synthesis via PTEN, hamartin, and tuberin degradation. This mechanism therefore provides a link between proteolysis and protein synthesis that might contribute to synaptic plasticity.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
MDL 28170, ≥90% (TLC)