Saltar al contenido
MilliporeSigma

Diacylglycerols mimic phorbol diester induction of leukemic cell differentiation.

Proceedings of the National Academy of Sciences of the United States of America (1985-02-01)
J G Ebeling, G R Vandenbark, L J Kuhn, B R Ganong, R M Bell, J E Niedel
RESUMEN

Activation of cellular protein kinase C appears to be involved in the mechanism by which phorbol diesters induce differentiation of human myeloid leukemia cells (HL-60). Protein kinase C is thought to be physiologically activated by diacylglycerol derived from receptor-mediated phosphatidylinositol hydrolysis. sn-1,2-diacylglycerols with short saturated acyl side chains (C4-C10) were synthesized and found to be potent activators of protein kinase C partially purified from HL-60 cells. These diacylglycerols were also competitive inhibitors of [3H]phorbol dibutyrate binding to the soluble phorbol diester receptor. The most potent diacylglycerol, sn-1,2-dioctanoylglycerol, displaced greater than 90% of [3H]phorbol dibutyrate from the phorbol diester receptor of intact HL-60 cells. Because of probable cellular metabolism of sn-1,2-dioctanoylglycerol, hourly doses were required to maintain persistent occupancy of the phorbol diester binding site. Treatment of HL-60 cells with either phorbol 12-myristate 13-acetate or sn-1,2-dioctanoylglycerol produced identical phosphoprotein changes. Finally, sn-1,2-dioctanoylglycerol induced differentiation of the HL-60 cells into cells with morphologic characteristics of macrophages. Substitution of the hydroxyl group at position 3 with a hydrogen, chloro, or sulfhydryl moiety inactivated sn-1,2-dioctanoylglycerol. These data strengthen the hypothesis that protein kinase C activation plays a role in macrophage differentiation.