Saltar al contenido
MilliporeSigma
  • Theoretical studies on the Mo-catalyzed asymmetric intramolecular Pauson-Khand-type [2+2+1] cycloadditions of 3-allyloxy-1-propynylphosphonates.

Theoretical studies on the Mo-catalyzed asymmetric intramolecular Pauson-Khand-type [2+2+1] cycloadditions of 3-allyloxy-1-propynylphosphonates.

Journal of molecular modeling (2012-02-03)
Qingxi Meng, Ming Li
RESUMEN

Density functional theory (DFT) was used to investigate the Mo-catalyzed intramolecular Pauson-Khand reaction of 3-allyloxy-1-propynylphosphonates. All intermediates and transition states were optimized completely at the B3LYP/6-31 G(d,p) level [LANL2DZ(f) for Mo]. In the Mo-catalyzed intramolecular Pauson-Khand reaction, the C–C oxidative cyclization reaction was the chirality-determining step, and the reductive elimination reaction was the rate-determining step. The carbonyl insertion reaction into the Mo–C(sp(3)) bondwas easier than into the Mo–C=C bond. And the dominant product predicted theoretically was of (S)-chirality, which agreed with experimental data. This reaction was solventd ependent, and toluene was the best among the three solvents toluene, CH3CN, and THF.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Molybdenumhexacarbonyl, ≥99.9% trace metals basis