Saltar al contenido
MilliporeSigma
  • Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis.

Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis.

Applied and environmental microbiology (2009-10-20)
Marc Auffret, Diane Labbé, Gérald Thouand, Charles W Greer, Françoise Fayolle-Guichard
RESUMEN

Two strains, identified as Rhodococcus wratislaviensis IFP 2016 and Rhodococcus aetherivorans IFP 2017, were isolated from a microbial consortium that degraded 15 petroleum compounds or additives when provided in a mixture containing 16 compounds (benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, octane, hexadecane, 2,2,4-trimethylpentane [isooctane], cyclohexane, cyclohexanol, naphthalene, methyl tert-butyl ether [MTBE], ethyl tert-butyl ether [ETBE], tert-butyl alcohol [TBA], and 2-ethylhexyl nitrate [2-EHN]). The strains had broad degradation capacities toward the compounds, including the more recalcitrant ones, MTBE, ETBE, isooctane, cyclohexane, and 2-EHN. R. wratislaviensis IFP 2016 degraded and mineralized to different extents 11 of the compounds when provided individually, sometimes requiring 2,2,4,4,6,8,8-heptamethylnonane (HMN) as a cosolvent. R. aetherivorans IFP 2017 degraded a reduced spectrum of substrates. The coculture of the two strains degraded completely 13 compounds, isooctane and 2-EHN were partially degraded (30% and 73%, respectively), and only TBA was not degraded. Significant MTBE and ETBE degradation rates, 14.3 and 116.1 mumol of ether degraded h(-1) g(-1) (dry weight), respectively, were measured for R. aetherivorans IFP 2017. The presence of benzene, toluene, ethylbenzene, and xylenes (BTEXs) had a detrimental effect on ETBE and MTBE biodegradation, whereas octane had a positive effect on the MTBE biodegradation by R. wratislaviensis IFP 2016. BTEXs had either beneficial or detrimental effects on their own degradation by R. wratislaviensis IFP 2016. Potential genes involved in hydrocarbon degradation in the two strains were identified and partially sequenced.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
2-Ethylhexyl nitrate, 97%