Saltar al contenido
MilliporeSigma

Successive epoxy and carbodiimide cross-linking of dermal sheep collagen.

Biomaterials (1999-06-03)
R Zeeman, P J Dijkstra, P B van Wachem, M J van Luyn, M Hendriks, P T Cahalan, J Feijen
RESUMEN

Cross-linking of dermal sheep collagen (N-DSC, T(S) = 46 degrees C, number of amine groups = 31 (n/1000)) with 1,4-butanediol diglycidyl ether (BDDGE) at pH 9.0 resulted in a material (BD90) with a high T(S)(69 degrees C), a decreased number of amine groups of 15 (n/1000) and a high resistance towards collagenase and pronase degradation. Reaction of DSC with BDDGE at pH 4.5 yielded a material (BD45) with a T(S) of 64 degrees C, hardly any reduction in amine groups and a lower stability towards enzymatic degradation as compared to BD90. The tensile strength of BD45 (9.2 MPa) was substantially improved as compared to N-DSC (2.4 MPa), whereas the elongation at break was reduced from 210 to 140%. BD90 had a tensile strength of 2.6 MPa and an elongation at break of only 93%. To improve the resistance to enzymes and to retain the favorable tensile properties, BD45 was post-treated with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) in the presence of N-hydroxysuccinimide (NHS) to give BD45EN. Additional cross-linking via the formation of amide bonds took place as indicated by the T(S) of 81 degrees C and the residual number of amine groups of 19 (n/1000). BD45EN was stable during exposure to both collagenase and pronase solutions. The tensile properties (tensile strength 7.2 MPa, elongation at break 100%) were comparable to those of BD45 and glutaraldehyde treated controls (G-DSC). Acylation of the residual amine groups of BD45 with acetic acid N-hydroxysuccinimide ester (HAc-NHS) yielded BD45HAc with a large reduction in amine groups to 10 (n/1000) and a small reduction in T(S) to 62 degrees C. The stability towards enzymatic degradation was reduced, but the tensile properties were comparable to BD45.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
1,4-butanediol diglicidil éter, ≥95%
Sigma-Aldrich
1,4-butanediol diglicidil éter, technical grade, 60%