Saltar al contenido
MilliporeSigma

Kinetics of light emission and oxygen consumption by bioluminescent bacteria.

Journal of bioenergetics and biomembranes (2001-11-17)
J J Bourgois, F E Sluse, F Baguet, J Mallefet
RESUMEN

Oxygen plays a key role in bacterial bioluminescence. The simultaneous and continuous kinetics of oxygen consumption and light emission during a complete exhaustion of the exogenous oxygen present in a closed system has been investigated. The kinetics are performed with Vibrio fischeri, V. harveyi, and Photobacterium phosphoreum incubated on respiratory substrates chosen for their different reducing power. The general patterns of the luminescence time courses are different among species but not among substrates. During steady-state conditions, substrates, which are less reduced than glycerol, have, paradoxally, a better luminescence efficiency. Oxygen consumption by luciferase has been evaluated to be approximately 17% of the total respiration. Luciferase is a regulatory enzyme presenting a positive cooperative effect with oxygen and its affinity for this final electron acceptor is about 4-5 times higher than the one of cytochrome oxidase. The apparent Michaelis constant for luciferase has been evaluated to be in the range of 20 to 65 nM O2. When O2 concentrations are as low as 10 nM, luminescence can still be detected; this means that above this concentration, strict anaerobiosis does not exist. By n-butyl malonate titration, it was clearly shown that electrons enter the luciferase pathway only when the cytochrome pathway is saturated. It is suggested that, in bioluminescent bacteria, luciferase acts as a free-energy dissipating valve when anabolic processes (biomass production) are impaired.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Luciferase from Vibrio fischeri (Photobacterium f), lyophilized powder