Saltar al contenido
MilliporeSigma

Comparative Analysis of the Antiviral Effects Mediated by Type I and III Interferons in Hepatitis B Virus-Infected Hepatocytes.

The Journal of infectious diseases (2019-03-30)
Jan-Hendrik Bockmann, Daniela Stadler, Yuchen Xia, Chunkyu Ko, Jochen M Wettengel, Julian Schulze Zur Wiesch, Maura Dandri, Ulrike Protzer
RESUMEN

Type III interferons (IFNs) (λ1-3) activate similar signaling cascades as type I IFNs (α and β) via different receptors. Since IFN-α and lymphotoxin-β activate cytosine deamination and subsequent purging of nuclear hepatitis B virus (HBV) DNA, we investigated whether IFN-β and -λ may also induce these antiviral effects in differentiated HBV-infected hepatocytes. After determining the biological activity of IFN-α2, -β1, -λ1, and -λ2 in differentiated hepatocytes, their antiviral effects were analyzed in HBV-infected primary human hepatocytes and HepaRG cells. Type I and III IFNs reduced nuclear open-circle DNA and covalently closed circular DNA (cccDNA) levels in HBV-infected cells. IFN-β and -λ were at least as efficient as IFN-α. Differential DNA-denaturing polymerase chain reaction and sequencing analysis revealed G-to-A sequence alterations of HBV cccDNA in IFN-α, -β, and -λ-treated liver cells indicating deamination. All IFNs induced apolipoprotein B messenger RNA-editing enzyme-catalytic polypeptide-like (APOBEC) deaminases 3A and 3G within 24 hours of treatment, but IFN-β and -λ induced longer-lasting expression of APOBEC deaminases in comparison to IFN-α. IFN-β, IFN-λ1, and IFN-λ2 induce cccDNA deamination and degradation at least as efficiently as IFN-α, indicating that these antiviral cytokines are interesting candidates for the design of new therapeutic strategies aiming at cccDNA reduction and HBV cure.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-APOBEC3A antibody produced in rabbit, affinity isolated antibody