Saltar al contenido
MilliporeSigma

The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability.

Molecular cell (2020-12-10)
Tian Tian, Min Bu, Xu Chen, Linli Ding, Yulan Yang, Jinhua Han, Xin-Hua Feng, Pinglong Xu, Ting Liu, Songmin Ying, Yang Lei, Qing Li, Jun Huang
RESUMEN

Replication fork reversal is a global response to replication stress in mammalian cells, but precisely how it occurs remains poorly understood. Here, we show that, upon replication stress, DNA topoisomerase IIalpha (TOP2A) is recruited to stalled forks in a manner dependent on the SNF2-family DNA translocases HLTF, ZRANB3, and SMARCAL1. This is accompanied by an increase in TOP2A SUMOylation mediated by the SUMO E3 ligase ZATT and followed by recruitment of a SUMO-targeted DNA translocase, PICH. Disruption of the ZATT-TOP2A-PICH axis results in accumulation of partially reversed forks and enhanced genome instability. These results suggest that fork reversal occurs via a sequential two-step process. First, HLTF, ZRANB3, and SMARCAL1 initiate limited fork reversal, creating superhelical strain in the newly replicated sister chromatids. Second, TOP2A drives extensive fork reversal by resolving the resulting topological barriers and via its role in recruiting PICH to stalled forks.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Sonda para PLA® in situ Duolink® anti-conejo PLUS, Affinity purified Donkey anti-Rabbit IgG (H+L)
Sigma-Aldrich
Sonda para PLA® in situ Duolink® anti-ratón MINUS, Affinity purified Donkey anti-Mouse IgG (H+L)
Sigma-Aldrich
Timidina, ≥99%
Sigma-Aldrich
Hydroxyurea, 98%, powder
Sigma-Aldrich
5-Bromo-2′-desoxiuridina, BioUltra, ≥99%
Sigma-Aldrich
5-Iodo-2′-deoxyuridine, ≥99% (HPLC)
Sigma-Aldrich
5-Chloro-2′-deoxyuridine, thymidine analog
Sigma-Aldrich
Melamine-(triamine-15N3), >80 atom % 15N (triamine), <20 atom % 15N (triazine), ≥97% (CP)