Saltar al contenido
MilliporeSigma

Fast field-cycling magnetic resonance detection of intracellular ultra-small iron oxide particles in vitro: Proof-of-concept.

Journal of magnetic resonance (San Diego, Calif. : 1997) (2020-04-06)
Hassan Abbas, Lionel M Broche, Aiarpi Ezdoglian, Dmitriy Li, Raif Yuecel, P James Ross, Lesley Cheyne, Heather M Wilson, David J Lurie, Dana K Dawson
RESUMEN

Inflammation is central in disease pathophysiology and accurate methods for its detection and quantification are increasingly required to guide diagnosis and therapy. Here we explored the ability of Fast Field-Cycling Magnetic Resonance (FFC-MR) in quantifying the signal of ultra-small superparamagnetic iron oxide particles (USPIO) phagocytosed by J774 macrophage-like cells as a proof-of-principle. Relaxation rates were measured in suspensions of J774 macrophage-like cells loaded with USPIO (0-200 μg/ml Fe as ferumoxytol), using a 0.25 T FFC benchtop relaxometer and a human whole-body, in-house built 0.2 T FFC-MR prototype system with a custom test tube coil. Identical non-imaging, saturation recovery pulse sequence with 90° flip angle and 20 different evolution fields selected logarithmically between 80 μT and 0.2 T (3.4 kHz and 8.51 MHz proton Larmor frequency [PLF] respectively). Results were compared with imaging flow cytometry quantification of side scatter intensity and USPIO-occupied cell area. A reference colorimetric iron assay was used. The T1 dispersion curves derived from FFC-MR were excellent in detecting USPIO at all concentrations examined (0-200 μg/ml Fe as ferumoxytol) vs. control cells, p ≤ 0.001. FFC-NMR was capable of reliably detecting cellular iron content as low as 1.12 ng/µg cell protein, validated using a colorimetric assay. FFC-MR was comparable to imaging flow cytometry quantification of side scatter intensity but superior to USPIO-occupied cell area, the latter being only sensitive at exposures ≥ 10 µg/ml USPIO. We demonstrated for the first time that FFC-MR is capable of quantitative assessment of intra-cellular iron which will have important implications for the use of USPIO in a variety of biological applications, including the study of inflammation.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Disolución de formalina, tamponada neutra, 10%, histological tissue fixative
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Ammonium iron(II) sulfate hexahydrate, 99.997% trace metals basis