Saltar al contenido
MilliporeSigma

Development of Human Monoclonal Antibody for Claudin-3 Overexpressing Carcinoma Targeting.

Biomolecules (2020-01-08)
Hobin Yang, Hayeon Park, Yong Jin Lee, Jun Young Choi, TaeEun Kim, Nirmal Rajasekaran, Saehyung Lee, Kyoung Song, Sungyoul Hong, Joon-Seok Choi, Hyunbo Shim, Young-Deug Kim, Soohyun Hwang, Yoon-La Choi, Young Kee Shin
RESUMEN

Most malignant tumors originate from epithelial tissues in which tight junctions mediate cell-cell interactions. Tight junction proteins, especially claudin-3 (CLDN3), are overexpressed in various cancers. Claudin-3 is exposed externally during tumorigenesis making it a potential biomarker and therapeutic target. However, the development of antibodies against specific CLDN proteins is difficult, because CLDNs are four-transmembrane domain proteins with high homology among CLDN family members and species. Here, we developed a human IgG1 monoclonal antibody (h4G3) against CLDN3 through scFv phage display using CLDN3-overexpressing stable cells and CLDN3-embedded lipoparticles as antigens. The h4G3 recognized the native conformation of human and mouse CLDN3 without cross-reactivity to other CLDNs. The binding kinetics of h4G3 demonstrated a sub-nanomolar affinity for CLDN3 expressed on the cell surface. The h4G3 showed antibody-dependent cellular cytotoxicity (ADCC) according to CLDN3 expression levels in various cancer cells by the activation of FcγRIIIa (CD16a). The biodistribution of h4G3 was analyzed by intravenous injection of fluorescence-conjugated h4G3 which showed that it localized to the tumor site in xenograft mice bearing CLDN3-expressing tumors. These results indicate that h4G3 recognizes CLDN3 specifically, suggesting its value for cancer diagnosis, antibody-drug conjugates, and potentially as a chimeric antigen receptor (CAR) for CLDN3-expressing pan-carcinoma.